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Abstract: This study investigates the impact of climate change (CC) on water resources in 
Phu Yen province, Vietnam by assessing historical trends of temperature, rainfall and flood 
simulation scenarios from a report of Vietnam of the Ministry of Natural Resources and 
Environment in 2020. The method for assessing the impacts on water resources was 
provided in the report of the Intergovernmental Panel on Climate Change (IPCC) in 2007. 
Several areas in Phu Yen province could be high risk of flooding in the middle of the 
century, such as Son Hoa, Song Cau, Tuy An, Dong Hoa and Tuy Hoa districts, where were 
chosen as study areas. The analytical results indicate that the impacts of climate change 
significantly influence to inundation on water resources in these localities. These results 
could help to partially predict impacts of climate change in the future and provide useful 
information to plan adaptation strategies in water utilization in Phu Yen province for the 
policy making on sustainable management with future climatic condition. 

Keywords: Impact of climate change; Water resources. 
 
 

1. Introduction 

Climate change has been considered as the greatest challenge of the world. It describes 
a change in the average climate conditions and extreme events are likely to have major impact 
on human and ecological systems. The water resources are amongst those severely expected 
affected by the changing climate [1]. In particular, the hydrological variables in terms of 
precipitation and temperature affect the intensity, frequency and timing of specific rainfall 
and potential evaporation, river runoff, surface water, groundwater, flooding, drought, saline 
intrusion, high tide and water demand [2–9]. The number of reports addressing both climate 
change and water resources [10–11]. In 2006, [12] reported that approximately 94 million 
people in the world will be strongly affected by, and sensitive to, variability in climate 
conditions with an increase around 40 cm of sea level. Among them, about 20% population 
is in the Southeast Asia area, particularly in the Mekong River Delta (Mekong Delta) and the 
Red River Delta regions in Vietnam. [13] reported that the sea level in Vietnam is rising up 
in the range of 1.75–2.56 mm every year. Vietnam is in the group of 5 countries most affected 
by the climate change, of which the Mekong Delta and the Red River Delta are the two most 
affected regions in Vietnam – once again the level of danger of climate change to Vietnam is 
affirmed. In addition, the lower Mekong Basin (Vietnam) is considered as one of three deltas 
in the extremely vulnerable to climate change beside the Ganges–Brahmaputra (Bangladesh) 
and Nile (Egypt) [15]. Several topics and projects on the assessment of climate variability 
relating to social economy in Vietnam were studied by many research groups in Vietnam. 
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For example, [16] investigated the change in nature, people and socio–economy in Ho Chi 
Minh City linked the variability of climate condition. In addition, [17] developed a guidance: 
“Assessment of the impact of climate change and identification of adaptation solutions” 
funded by the United Nations Development Program (UNDP). 

In 2015, [18] developed the Special Report on Managing the Risks of Extreme Events 
and Disasters to Advance Climate Change Adaptation (SREX). [19] investigated the impact 
of saltwater intrusion and socio–economic factors on agricultural sector in Vung Liem 
district, Vinh Long province. In particular, in assessing the impact of climate change on water 
resources (WR), there is a project implemented by the Institute of Hydrometeorology and 
Environment (2010) in the Mekong Delta sponsored by the Danish Embassy in Vietnam. The 
vulnerability of water resources also depends on the change in intensity and frequency of 
extreme hazards, which have been calculated by numerical models such as: climate 
simulation from the AGCM/MRI (models of the Institute for Meteorology Japan), the 
PRECIS model of the UK Hadley Center and the CCAM model of the Commonwealth 
Scientific and Industry Research Organization, Australia (CSIRO), the hydraulic model 
simulation and the GIS modeling methods [20–21]. 

Phu Yen is located in the Central of Vietnam, as one of the most beautiful coastal 
provinces in Vietnam, with coastal islands and a complicated coastline. With the advantage 
of being a gateway to the sea of the Central Highlands economic region, Phu Yen province 
has had a strong growth rate, and marine tourism has contributed as a main sector to attract 
many domestic and foreign investors. So far, the increase in human activities during socio–
economic development, and activities of over exploiting GHG sinks in forests and 
ecosystems enhance greenhouse gases emission, which could enhance the worst influence of 
climate change in the local area. According to the scenario RCP4.5 by the mid–century, the 
increase in mean surface temperature every year in Phu Yen province is around 1.5oC [1]. As 
for rainfall, by mid–century, the sea level is commonly varying from 8.5–17.4% under the 
RCP4.5 scenarios. It has been reported that the estimated sea level increasing in Phu Yen 
province in the mid–century (2050) is around 22.5 cm. Consequently, it is forecasted that the 
risk of flooding also increases in coastal areas, and along the downstream rivers at low–lying 
terrain exhibit an increasing the flooding rate varies from 5.55% (in 2021) to 6.29% (RCP4.5 
scenarios by mid–century), which is much higher than other areas in the whole province [22]. 
It is notable that the impact of climate change on the rainfall, flooding, sea level rising, and 
water resources in Phu Yen province could be extremely unpredictable in the future. It could 
be a scarcity of water resources in the dry season and flood in the rainy season, leading to the 
difficulties in water supply and demand in Phu Yen. Therefore, it is needed to assess the 
impact of climate change on the water resources in the province. 

Thus, to assess the impact of climate change on water resources in Phu Yen province, 
The purpose of this study is used the results of data on climate change scenarios (temperature, 
rainfall, drought, sea level rise [2]) by using modeling method was mainly used in computing 
and assessing flood inundation impacts on water resources. The research result provides 
scientific foundation for strategic solutions and improving action plans to respond to climate 
change, contributing to ensure sustainable development goals in Phu Yen province. 

2. Materials and Methods 

2.1. Study area 

Phu Yen province is located in the South–Central Coast of Vietnam, with a drainage area 
of 506,057 hectares which is 1.53% of the total area of Vietnam, as shown in Figure 1. The 
topography of the province is quite diverse, consisting of 70% high region in the west and 
30% of the fertile plain in the east such as coastal plains, low hills, coastal gentle hills, 
highlands and valleys [22]. Currently, water resources in Phu Yen area are come from (i) 
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rainfall in last 3 or 4 months of the year, with the annual precipitation of 1,700–2,000 mm, 
and (ii) surface water sources from 17 rivers with catchment areas in range of 100500 km2. 
Among the 3 major rivers including Ky Lo, Ba and Ban Thach River, Ba River is the largest 
river in the Central area, with a basin area of 13,500 km2.  

 

Figure 1. Map of Phu Yen province. 
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Although the rainfall distribution over the year is significantly heterogeneous, the rivers 
are still the main water resource for agriculture and water supply. In particular, 65–75% of 
total annual rainfall is distributed from October to December in the wet season (or flood 
season), while January to September of the next year is the dry season, with around 25–35% 
of annual rainfall, as measured by volume. Additionally, there are two dry periods in April 
and August with only 2% of annual rainfall. Moreover, it is influenced by diurnal tide regime 
from 17 to 23 days every month and also by irregular semi–diurnal tide on the remaining 
days. Since the heavy floods at the downstream of Ba River and the tides of the East Sea are 
often occurred at the same time of the year, it may make an extreme danger in the downstream 
area during flood season, especially in the Tuy Hoa rice cultivation area of Dong Cam 
irrigation system. Therefore, it is necessary to have solutions for water drainage in the 
downstream areas and especially in the rice cultivation areas and Tuy Hoa city. 

2.2. Modeling setup 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Oriented framework for flood calculation in Phu Yen province. 
The modeling method will be mainly used in calculating and assessing flood impacts on 

water resources. MIKE of DHI software for the hydraulic calculation of the study area are 
applied in the study and the used modules consist of MIKE 11HD, MIKE 21FM and MIKE 
FLOOD. Models are calculated in accordance with the orientation frame, as shown in Figure 
2. 

2.3. Methods of assessing climate change impacts on water resources 

Water resources is a sensitive sector for climate factors such as temperature, rainfall, sea 
level rise and the increase of the intensity and frequency of extreme climate events. 
Therefore, climate change has a great impact on water resources (Surface runoff water, 
reserves of water sources, water quality and quantity). After calculating and  analyzing flood 
inundation levels and affected areas, the analysis of the challenges of water resources in the 
context of climate change is used in the methods at in the Table 1. 

Table 1. Methods of assessing climate change impacts on water resources [17]. 

Elements of 
climate 

Influenced objects Risk effects 
Evaluation methods and 

tools 

Increased 
temperature 

Surface runoff 

Change the operational intensity 
of atmospheric circulation, water 
cycle, hydrological regime and 
other physical cycles 

Mathematical model for the 
correlation between 
precipitation and temperature 
and runoff for the basin 

Increased 
Precipitation 

Volume of water 
sources 

Increase water volume Hydrological model 

Data: network, discharge, water level, cross sections, 
Boundary cond... 

Topography: Bathymery and 
BoundaryXYZ file  

MIKE 

Scenarios data Flood frequency data 

Calculation inundation for climate change scenarios to in the future ArcGis 
Tool 

Area, depth, time inundation in Phu Yen province with present and climate change scenarios 

Model calibration and 
validation 
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Elements of 
climate 

Influenced objects Risk effects 
Evaluation methods and 

tools 

 Water quality 
Water pollution can be spread 
due to excessive rain causing 
inundation 

Development of flooding maps  

Sea level rise Water source 

Increase risk of inundation and 
soil erosion; change the flow 
regime in rivers and 
groundwater; change 
geomorphology in estuaries. 

Models for predicting changes 
in surface runoff and 
groundwater 
Flood mapping method 

 Water quality 
The level of water pollution 
increases due to widespread and 
prolonged inundation 

Flood mapping method 
Vulnerability and impact 
mapping method 

Increase of the 
intensity and 
frequency of 
extreme 
climate events 

Water sources 
Inundation increases in some 
areas 

Map overlapping method  
Vulnerability and impact 
mapping method 

2.4. Spatial interpolation methods 

Inverse Distance to a Power and Surfer 10.0 software are utilized to calculated the 
exposure possibilities of different areas within study scope. The distance inverse method 
determines values for grid cells by averaging the values of sample points in the vicinity of 
each grid cell. The closer the point is to the center point (being determined), and the more 
influence it has. 

Interpolation: 

𝑍መ(𝑆଴) =  ∑ 𝜆௜𝑍(𝑆௜)
௡
௜ୀଵ ;   𝜆௜ =  

ௗ೔ೕ
ష೛

∑ ௗ
೔ೕ
ష೛೙

೔సభ

          (1) 

where dij is the spatial distance between the two points i and j. The higher the exponent 
p is, the lower the influence of the distant points is and some consider insignificant, normally 
p = 2. However, in some cases the input data density is high, p must be correspondingly high. 
In this study, it is expected to apply p = 5. 

Search Radius: The characteristic of the interpolated surface is also influenced by the 
search radius that limits the number of sample points used to calculate the interpolated grid 
cells. 

Barrier: A barrier is a set of polylines as an interruption limiting the area to seek sample 
points. A polyline can be a cliff, a mountain, or some other barriers in the landscape. When 
this element appears, only the sample points on the same side and the grid under survey are 
considered. In the case of interpolation for inundation and saline intrusion, the barrier is the 
boundary of the rivers. 

2.5. Mapping method 

Techniques of information integration were used for mapping, overlapping layers of 
weighted information, synthesizing, calculating for main and sub–indexes through ArcGIS 
10.1 software on the map, as coordinate system VN_2000. 

2.6. Data 

In this study, data used in the method for collecting, synthesizing, inheriting are 
documents of natural, socio–economic and environmental conditions; data on climate change 
scenarios (temperature, rainfall, drought) (as shown in figures 3–5), topographical data 
including 119 of cross – sections, the computation mesh of the main river bed, more than 20 
river banks of Ba and Ky Lo river systems and sea level rise in Phu Yen province to develop 
the inundation maps from which to assess the impacts of climate change on the water 
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resources in Phu Yen province. 270 survey questionnaires of people in 8 cities, towns and 
districts of Phu Yen province are used to assess which floods have serious impacts in the 
locality. Inundation and data of climate change and sea level rise scenario are built according 
to the average emission scenario RCP4.5 in 2030 and 2050 [22]. 

 

Figure 3. Scenario of annual average temperature change in Phu Yen province: (a) RCP4.5 năm 
2030; (b) RCP4.5 năm 2050. 

 

Figure 4. Scenario of annual rainfall change in Phu Yen province: (a) RCP4.5 in 2030; (b) RCP4.5 
in 2050. 
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Figure 5. Scenario of changes in the yearly standardized precipitation index (SPI) in Phu Yen 
province: (a) RCP4.5 in 2030; (b) RCP4.5 in 2050. (Note: SPI Index range:  ≥ 2: extremely wet; 1.5 
÷ 1.99: very wet; 1.0 ÷1.49: moderately wet; -0.99 ÷ 0.99: near normal; -1.0 ÷ -1.49: moderately dry; 
-1.50 ÷ -1.99: severely dry; ≤ -2.0 extremely dry). 

3. Results and Discussion 

3.1. Model calibration and validationof MIKE 11HD model 

Calibration and validation of MIKE 11HD model used the past floods to find the suitable 
parameters for the simulation scenarios. The calibration and validation process used an 
observed water level at Phu Lam station during from Feb to July, 2016 and from Feb to July, 
2013, respectively. In this study, Nash–Sutcliffe efficient (NSE) and Coefficient of 
determination (R2) were used to evaluate the observed and simulated water levels. The results 
of the calculated and observed water levels are in good agreement in terms of the vibration 
amplitude, absolute value, and phases during both the calibration and validation processes. 
The values R2 ranged from 0.89 to 0.92 for calibration and validation, respectively. It 
indicates that model results produced for the flow are very good for both periods. The NSE 
value for calibration and validation of water level at Phu Lam ranged from 0.79–0.80. The 
simulation results for the hydrodynamic regime using MIKE11HD model were very good in 
term of performance ratings as revealed by NSE and R2. The calibration parameters used in 
the model validation process were bed resistance Manning coefficients which varied from 
0.03 to 0.033 (m1/3/s). The calibration characteristic parameters such as Manning coefficients 
(M), time, and time–step is performed by means of gradually. 
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Figure 6. The calibration and validation process used an observed water level at Phu Lam station. 

3.2. Model calibration and validation of MIKE FLOOD model 

Calibration of MIKE FLOOD model used an observed floods in downstream at Cung 
Son site, Ba River and Ha Bang site, Ky Lo river. The values R2 ranged from 0.92 to 0.93 for 
calibration, respectively (Cung Son site (R2 = 0.92) and Ha Bang site (R2 = 0.93)). The NSE 
value for calibration of water level at these sites ranged from 0.63–0.71 (Cung Son (NSE = 
0.71) and Ha Bang (NSE = 0.32)), from 01st to 06th, December, 2016. 
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Figure 7. The calibration process used an observed water level at Cung Son and Ha Bang site from 
01st to 06th, December, 2016. 

Validation of MIKE FLOOD model used an observed floods in downstream at Cung 
Son site, Ba River and Ha Bang site, Ky Lo river.  The values R2 ranged from 0.92 to 0.96 
for validation, respectively (Cung Son site (R2 = 0.92) and Ha Bang site (R2 = 0.96)). The 
NSE value for validation of water level at these sites ranged from 0.72–0.75 (Cung Son (NSE 
= 0.75) and Ha Bang (NSE = 0.72)), from 04th to 08th, December, 2013.  

The validation model results in the flood from 04th to 08th, December, 2013 showed 
that the MIKE FLOOD model was well–simulated between observed flood and calculated 
water level at sites. It could be concluded that the MIKE FLOOD hydraulic model was 
reliable enough to simulate and calculate the flood scenarios and establishing inundation 
maps. 

 

 

Figure 8. The validation process used an observed water level at Cung Son and Ha Bang site from 
04th to 08th, December, 2013. 
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3.3. Computating flood inundation  results 

The results of flood inundation in the area are evidenced by the simulation time shown 
in figure and application of ArcGIS 10.1 software and data layers including flooded layer 
depths simulated by MIKE FLOOD model, terrain data, administrative boundary data, flood 
survey data, situational data and so on to establish the inundation map according to the 
scenarios. The inundation map that illustrates flooding inundation according to the scenario 
given is shown in Figure 9. Because the territory stretches along the coastline and the river 
system flows in the West–East direction. The riverbed is steep and narrow at the upstream 
and wider at the downstream toward the sea. Therefore, the lower coastal area in Phu Yen 
province is heavily affected by floods. The scenario of climate change (rainfall changes with 
the seasons), sea level rise is used calculated as the RCP4.5 with scenarios corresponding to 
the periods 2030, 2050. The results of the calculation flood according to the scenarios 
represented in Figure 9. The calculated flood inundation results of the scenarios have a 
relative increase compared to the current flood status, by the rainfall volume in the upstream, 
sea level rise in downstream of the rivers. The higher the sea level rise scenarios, the greater 
the flood inundation level and the area of flooding. The areas affected by flood inundation 
are mainly in Tuy Hoa City, Tuy An District, Cau River Town, Hinh River District and Dong 
Xuan District. 

- Regarding the flood level: the lowest is 0.1 m, the highest is 4.0 m and the maximum 
flood level is in range of 1.0–3.0 m. Specifically, the flooded area of the whole Phu Yen 
province with the flooding level of 1.0–2.0 m could be 6,560 and 6,624 ha as predicted in 
2030 and 2050, respectively. If the flooding level is from 2.0–3.0 m, the flooded area of the 
whole province might become to be 7,692 ha (in 2030) and 7,700 ha (in 2050), as shown in 
Table 2. 

 - Regarding the flooding scope and flooding rate: the two districts Dong Hoa and Phu 
Hoa could be largest flooded areas, and highest the flood rates with 11.05% and 13.18% 
compared to the total natural area of the two districts, respectively (Table 3). On the other 
hand, the districts Son Hoa, Song Hinh, and Song Cau town have the smaller flooded areas. 

Table 2. The flood rea corresponds to flooding levels in Phu Yen province under the RCP4.5 scenario 
(Unit: hectare). 

Time 2030 2050 

Flood (m) 0.1 – 
0.5 

0.5 – 
1 

1 – 2 2 – 3 3–4 0.1 – 
0.5 

0.5 – 
1 

1 – 2 2 – 3 3–4 

City/ District           

Tuy Hoa City 28 84 604 1084 2468 28 80 676 1024 2528 

Song Cau Town 76 212 284 48 88 76 212 284 48 88 
Dong Xuan District 12 64 260 372 884 12 64 248 376 892 

Dong Hoa District 76 464 1580 2428 6428 76 468 1588 2472 6476 
Phu Hoa District 48 600 2288 2352 1600 44 560 2224 2368 1696 

Son Hoa District 36 12 112 116 388 36 0 112 112 404 
Song Hinh District 92 68 152 120 512 92 44 164 108 536 

Tay Hoa District 420 564 708 428 424 720 576 784 476 464 
Tuy An District 480 460 572 744 1864 480 460 544 716 1920 

Province 1,268 2,528 6,560 7,692 14,656 1,564 2,464 6,624 7,700 15,004 

Table 3. Flooded area and flooding rate in Phu Yen province under the RCP4.5 scenario (Unit: 
hectare). 

City, district, town Natural area 
Flood area (ha) 

The rate of flooded area 
over the natural area (%) 

2030 2050 2030 2050 

Tuy Hoa City 110,336.04 4,268 4,336 3.87 3.93 

Song Cau Town 28,302.83 708 708 2.50 2.50 
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City, district, town Natural area 
Flood area (ha) 

The rate of flooded area 
over the natural area (%) 

2030 2050 2030 2050 

Dong Xuan District 26,981.64 1,592 1,592 5.90 5.90 

Dong Hoa District 99,289.37 10,976 11,080 11.05 11.16 

Phu Hoa District 52,292.90 6,888 6,892 13.17 13.18 

Son Hoa District 94,737.44 664 664 0.70 0.70 

Song Hinh District 66,611.95 944 944 1.42 1.42 

Tay Hoa District 43,283.54 2,544 3,020 5.88 6.98 

Tuy An District 11,843.62 4,120 4,120 34.79 34.79 

Province 533,679.32(a) 32,704(a) 33,356(a) 6.13(b) 6.25(b) 

Note: (a) = Total area, (b)= Rate of flooded area over the province 
 

 

Figure 9. Map of climate change impact indicators in Phu Yen province according to the RCP4.5 
scenario: (a) RCP4.5 in 2030; (b) RCP4.5 in 2050. 

Regarding the popular flooding depth (0.1–0.5 m) and serious flooding depth (> 2.0 m): 
It can be observed that the inundation rate in 2030 and 2050 are 3.88 and 4.69 %, respectively, 
in total flooded area of the whole province, as presented in Table 5. 

In the range of popular flooding depth: Tuy An and Tay Hoa district reveal highly 
proportion of flooded areas with 1.47, 1.28 % (2030) and 1.44, 2.16% (2050), as calculated 
in the total flooded area of the province, respectively. 

In the range of serious flooding depth: Tuy Hoa city, Dong Xuan district and Dong Hoa 
are localities with higher flooding rates compared to other urban districts in the same depth 
range. In the years of 2030 and 2050, the above localities have the rate of flooded area over 
78% in comparison with the total flooded area of the whole province. In addition, Son Hoa 
district has flooded areas in 2030 and 2050 accounting for 75.90% and 77.71%, respectively. 
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Table 4. Flooding rates in Phu Yen province classified by popular and severe flooding depth, RCP4.5 
scenario (Unit: %). 

City/ District Popular Flooding Depth  
(0.1–0.5 m) 

Serious Flooding Depth (>2.0 m) 

2030  2050 2030 2050 
Tuy Hoa City 0.09 0.08 81.92 83.22 
Song Cau Town 0.23 0.23 19.21 19.21 
Dong Xuan District 0.04 0.04 78.89 79.65 
Dong Hoa District 0.23 0.23 80.69 80.76 
Phu Hoa District 0.15 0.13 57.38 58.97 
Son Hoa District 0.11 0.11 75.90 77.71 
Song Hinh District 0.28 0.28 66.95 68.22 
Tay Hoa District 1.28 2.16 33.49 31.13 
Tuy An District 1.47 1.44 63.30 63.98 

Province 3.88 4.69 68.33 68.07 

Water resources are an important factor in the socio–economic development of each 
locality, but urbanization and population growth have led to a series of consequences such as 
water pollution, decrease in water quantity. In addition, climate change factors also contribute 
to changes in the quality and quantity of water resources. Climate change impacts the water 
environment through the following aspects: 

Rainfall changes, increases in the rainy season and decreases in the dry season, along 
with an increase in temperature leads to a change in the evaporation factor, which is potential 
to change the flow of rivers as well as underground water flows. Flood and drought have 
serious impacts on water environment through both water reserve and quality. 

Due to the high risk of flooding in 2030 and 2050, the water resources management in 
Phu Yen province should be careful considered. The high level of inundation will lead to 
riverside areas in the Ba River basin from Ha Bang station (Dong Xuan district) to Phu Lam 
station (Tuy Hoa city) being heavily flooded, with the popular flooding levels in range of 
0.6–1.15 m. 

- Dams on the river such as Lo Gom, Thach Khe, Dong Kho (Song Cau town) is in the 
flooded area from 0.65 to 1.25 m. In addition, dams namely Dong Lau, Bau Da, Tan Giang 
Huong, Dinh Ba are also affected in the popular flooding level of 0.15 to 0.25 m. 

- The dyke sections of Xuan Hai, Xuan Loc, Xuan Canh (in Song Cau town), Binh Thanh 
dyke, An Hiep dyke – Phu My and Ngo Ham Thuy dyke (in Tuy An district) are also in the 
flooded area due to sea level rise, increasing the risk of bank erosion by the dyke in 2030 and 
2050 if there is no response approach for climate change. 

In addition to analyzing flooding levels and affected areas, the analysis of the strengths, 
weaknesses, opportunities and challenges of water resources in the context of climate change 
is the basis for planning adaptation solutions, integrating into water exploitation and use 
planning in Phu Yen (Table 5). 

Table 5. Analysis on the pros and cons, opportunities and challenges of water resources in the context 
of climate change in Phu Yen province. 

Pros Cons 

Hydropower works and irrigation lakes are 
capable of storing a huge amount of water, 
supplementing surface water for many areas 
Ba River – Ky Lo River flow from the Central 
Highlands, bringing a relatively large amount 
of fresh water to the locality. 

Irrigation infrastructure is incomplete, many areas are in 
lack of water in the dry season, especially the mountainous 
areas affected by salt water intrusion and drought. 
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Pros Cons 

Opportunities Challenges 

Heavy rain is an important source of 
replenishment of surface and groundwater, 
especially in the rainy season. 
Irrigation systems are being built to meet the 
demand of water for production in many 
different areas. 
 

The dry season is getting more and more severe, leading to 
a local drought. The water level of the lakes is low in several 
times, reducing the water supply capacity for production and 
salinity downstream areas. 
Flooding caused by tides affects surface water quality, 
especially in coastal areas such as Tuy Hoa, Song Cau, ... 
Heavy rains change water quality, water sources containing 
a lot of pollutants and suspended solid. 

4. Conclusion 

MIKE software ( MIKE11, MIKE 21 and MIKE FLOOD) have been used  in this study 
with rainfall and air temperature data under climate change scenariors. The result shows that: 
(i) water resources distribution in Phu Yen provice will be potentially affected by the flood 
due to the sea level rise in some concerned areas including districts with major rivers flowing 
through and high risk of inundation in the middle of the century such as Son Hoa, Song Cau, 
Tuy An, Dong Hoa and Tuy Hoa districts; (ii) inundation due to floods will be a source of 
significant amounts of surface water and groundwater to reduce water pressure during dry 
times; (iii) inundation caused by the sea level rise will increase the spread of salinity in the 
surface water, potentially leading to the deterioration of groundwater quality in the coastal 
areas of the province such as Song Cau, Tuy An, Tuy Hoa and Dong Hoa, etc. 

MIKE software is a very useful  tool for flood inundation simulation in Phu Yen provice 
even lack of investigated data on flood traces and MIKE 21 model has not been verified and 
calibrated. It can be applied effectively to assess impact of climate change on the water 
resources in other provinces / cities / river basins in Vietnam  if measured data on topography, 
water level and flood traces with high reliability are available. 

Acknowledgments: This study is carried out under the financing of the Project for 
“Development and update of the Action Plan for response to Climate Change for the period 
2021–2030, vision to 2050 of Phu Yen province” implemented from 2019–2021. 

Author Commitment Statement: The paper submitted with the full knowledge and consent 
of the author (if any), without any prior publishment or copy from other previous studies; 
There is no dispute of interest in the authors group. 

References 
1. IPCC. The Physical Science Basis. Contribution of Working Group I to the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change, 2007. 
2. Ministry of Natural Resources and Environment, Climate change and sea level rise 

scenarios for Vietnam. Vietnam Publishing House of Natural Resources, 
Environment and Cartography, 2020. 

3. Tan, P.V.; Thanh, N.D. Climate change in Vietnam: Some research results, 
challenges and opportunities in international integration. VNU J. Sci.: Earth Environ. 
Sci. 2013, 29(2), 42–55. 

4. Hong, N.V., Dong, N.P. Simulation of saline intrusion in main rivers of Ba Ria – 
Vung Tau province under the context of climate change. VN J. Hydrometeorol. 2021, 
728, 67–79. 

5. Hong, N.V.; Dong, N.P. Studying on building the flood scenarios in ho chi minh city 
by the impacts of climate change. VN J. Hydrometeorol. 2021, 729, 1–13. 

6. Hong, N.V.; Nguyen, V.T. The impact of Climate Change on the transportation in 
Binh Thuan Province. VN J. Hydrometeorol. 2021, 8, 9–15. 



VN J. Hydrometeorol. 2022, 11, 1-14; doi:10.36335/VNJHM.2022(11).1-14 14 

 

7. Hong, N.V.; Hien, N.T.; Minh, N.T.T.; Toan, H.C. Forecasting saline intrusion under 
the influence of the northeast monsoon in the Mekong Delta. VN J. Hydrometeorol.  
2021, 9, 23–36. 

8. Hong, N.V.; Dong, N.P. Research on assessing the impact of saline intrusion on the 
water resources in Ho Chi Minh City in the context of climate change. VN J. 
Hydrometeorol. 2021, 10, 11–23. 

9. Tri, D.Q. Application MIKE 11 model on simulation and calculation for saltwater 
intrusion in Southern region. VN J. Hydrometeorol. 2016, 671, 39–46. 

10. World Bank. The Impact of Sea Level Rise on Developing Countries: A Comparative 
Analysis. World Bank Policy Research Working Paper 4136. 2007. Available online: 
http://go.worldbank.org/775APZH5K0 (accessed on 15 March 2017). 

11. MONRE (Ministry of Natural Resources and Environment of Vietnam). Vietnam 
special report on managing the risks of extreme events and disasters to advance 
climate change adapatation. Vietnam publishing house of Natural Resources, 
Environment and cartography, 2015. 

12. Nicholls, R.J.; Lowe J.A. Climate Stabilization and Impacts of Sea–Level Rise. 
Avoiding Dangerous Climate Change. Cambridge University Press, ISBN: 13 978–
0–521–86471–8. 2006. 

13. Hanh, P.T.T. and Furukawa, M. Impact of sea level rise on coastal zone of Viet Nam.  
Bulletin of the College of Science, University of the Ryukyus, ISSN: 0286–9640. 
2007. 

14. Dasgupta, S.; Laplante, B.; Meisner, C.; Wheeler, D.; Yan, J. The Impact of Sea 
Level Rise on Developing Countries. Clim. Change 2009, 93, 379–388. 

15. IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution 
of Working Group II to the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der 
Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 2007, 
pp. 976. 

16. Phung, N.K. Assessment of the climate change impact on nature, people, and socio–
economy in Ho Chi Minh City. 2011. 

17. Vietnam Institute of Meteorology, Hydrology and Climate Change. Guidance for 
Assessment of Climate Change Impact and Identification of Adaptation Options. 
Vietnam Map and Natural Resources and Environment Publishing House. 2011. 

18. Thuc, T.; Huong, T.T.T.; Thang, N.V.; Nhuan, M.T.; Tri, L.Q.; Thanh, L.D.; Huong, 
H.T.L.; Son, V.T.; Thuan, N.T.H.; Tuong, L.N. Special Report of Vietnam on 
Managing the Risks of Natural Disaster and Extreme Phenomena to Promote Climate 
Change Adaptation. Vietnam. Vietnam Publishing House of Natural Resources, 
Environment and Cartography. Hanoi, Vietnam, 2015. 

19. Nguyen, Q.H.; Cao, T.Q., Vo, T.P.; Le, V.K.; Vo, Q.M. Evaluation on the effects of 
saline intrusion and socio–economic factors on agricultural production in Vung Liem 
district, Vinh Long province. Can Tho Univ. J. Sci.: Environ. Clim. Change 2017, 1, 
64–70.  

20. Ministry of Natural Resources and Environment, Updated Nationally determined 
Contribution (NDC) for Vietnam. Vietnam Publishing House of Natural Resources, 
Environment and Cartography, 2020. 

21. Institute of Meteorology, Hydrology and Climate Change. The Impacts of Climate 
Change on Water Resources and the Mekong Delta Adaptation Measures. 2010. 

22. The People’s Committee of Phu Yen province. Project: Developing and updating the 
Action Plan in response to Climate Change in the period 2021–2030, vision to 2050 
of Phu Yen province, 2019. 

 



 

VN J. Hydrometeorol. 2022, 11, 15-25; doi:10.36335/VNJHM.2022(11).15-25 http://vnjhm.vn/ 

Research Article 

Application of self-organizing maps and K–Means methods to 
classify summer heat wave weather patterns in Viet Nam 

Mai Tran Thi Tuyet1, Hoa Van Vo1*, Tuan Le Danh2 

1 Regional Hydro–Meteorological Center of Red delta river basin; 
tuyetmai1295@gmail.com; vovanhoa80@yahoo.com 
2 Control Automation Production Institute of Technology (CAPIT); 
ledanhtuan@gmail.com 

*Corresponding author: vovanhoa80@yahoo.com; Tel.: +84–912509932 

Received: 23 March 2022; Accepted: 20 May 2022; Published: 25 June 2022 

Abstract: The research applies self-organizing maps (SOM) technique in combination with 
K–Means method to objectively classify weather patterns that cause summer heat wave in 
Viet Nam based on the dataset from 1998 to 2018. The pressure of mean sea level (PMSL) 
and geopotential height at 500hpa (H500) of JRA25 reanalysis data are used. The heat wave 
is defined to occur if the daily maximum temperature of at least 2/3 of surface synoptic 
stations in research area was greater than 35oC. According to above mentioned criteria, 156 
summer heat waves were subjectively found at Northern region in period of 1998–2018. In 
central and southern regions, the summer heat waves were respectively found 204 and 69. 
By applying SOM and K–Means, there were 4, 3 and 2 key weather patterns that caused 
summer heat waves in Northern, Central and Sothern region respectively. In fact, the 
weather pattern caused summer heat waves at research region is usually related to activities 
of the western hot depression pattern and Northwest Pacific Subtropical High Pressure. The 
combination of 2 weather patterns or more was usually found Northern and Central region. 
However, the number of heat wave detected by SOM is smaller than number of heat wave 
was subjectively determined by forecaster (there are 109, 171 and 62 heat waves detected 
by SOM for the Northern, Central and Sothern region respectively). The reason for this 
result is that SOM method has not been able to identify heat waves caused by the 
combination of many weather patterns or by small and meso–scale weather patterns. 

Keywords: SOM; Classification; Summer heat waves; Heat wave weather patterns. 
 
 

1. Introduction 

In recent years, under the impact of climate change, heat wave has been occurring in 
Vietnam with an increasing trend in both frequency and intensity. Damage statistics show 
that heat waves are also a type of natural disaster that causes a lot of damage to people and 
property. Therefore, it is very necessary to increase the understanding of the mechanism that 
causes heat wave to improve forecast quality. In Vietnam, there have been many studies on 
summer heat waves in which refer to many aspects from the statistics of heat wave frequency 
based on past data sets [1–2], causes and patterns of heat wave [3–5], forecasting heat wave 
is based on statistical methods [6] and NWP models from short term to seasonal scale [7], 
predicting the change of heat in the future according to climate change scenarios, etc. 

In the classification of weather patterns, the SOM method is widely applied, especially 
related to heavy rain problems [8–11]. The SOM method has been applied in the 
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classification of heat wave weather patterns, specifically, [12] used ERA–Interim reanalysis 
data of the ECMWF from 1979 to 2016 to classify patterns for heat waves where the daily 
maximum temperature on that day is greater than the 90th percentile of the data series. The 
results show that the synoptic patterns caused heat wave are classified into 6 clusters based 
on PMSL anomalies in East Asia. Recently, SOM method has been applied in the 
classification of abnormal heat wave weather patterns in winter for Northern part of Viet 
Nam [7]. 

According to studying the causes and weather patterns that cause heat wave, most studies 
have partially shown the causes and statistics of typical weather patterns. However, these 
studies are mainly based on synoptic analysis methods and are analyzed subjectively by 
forecasters, so the obtained results are still subjective and difficult to apply in operational 
prediction. To contribute additionally to the results of classification of weather patterns that 
cause heat wave in Vietnam in an objective way, the research applies the SOM (Self–
Organizing Map) method in combination with JMA’s JRA25 reanalysis data set to identify 
groups of weather patterns that cause large–scale heat wave events in some areas of Vietnam. 
The research mainly focuses on summer heat wave in Viet Nam that occurred in large scale 
and weather patterns that significantly caused these summer heat waves. The daily maximum 
temperature data at surface synoptic stations, pressure of mean sea level and geopotential 
height at 500hpa of JRA25 reanalysis data will be used. The next of paper will give out the 
dataset and methodology in SOM application. The results present in third part of paper. It 
finally is some conclusions and remarks. 

2. Materials and Methods 

2.1. Dataset 

To be able to find out statistics of heat waves occurring over Vietnam in the 21 years 
from 1998 to 2018, we collected maximum temperature data (Tx) at 183 surface synoptic 
stations. As is known, the heat wave cannot be directly observed, but it is determined from 
the observed quantities based on the given criteria. In the operational forecast, according to 
the intensity of heat wave, it can be divided into 3 types including heat wave (35oC ≤ Tx < 
37oC), strong heat wave (37oC ≤ Tx < 39oC) and extreme heat wave (Tx ≥ 39oC). According 
to influenced area, heat wave can be divided into large–scale heat wave and local heat wave. 
To simplify the determination and ensure that there is enough sample size for SOM method, 
in this study we use the criterion Tx ≥ 35oC and have at least 1/2 of the surface synoptic 
stations in the study area satisfy the condition Tx ≥ 35oC at the same time. In addition, the 
heat wave in this study is mainly considered under the concept of a “wave”, which satisfies 
the condition that at least 1 day occurs or there are 2 or more days as sequency. In case if the 
satisfactory days are interleaved with the unsatisfactory days, it is also defined as a heat wave. 

Heat wave occurs every year in Vietnam and there are differences between climate in 
terms of origin, causes, intensity, scope, etc. The research aims at a large–scale heat wave as 
mentioned above and only aims to identify the dominant weather patterns, so there will be 
many heat waves occurring in many regions at the same time. Therefore, to ensure that the 
classification by SOM is objective, not duplicated and clearly shows the dominant weather 
patterns, we divide the study area across the country into 3 regions including the North 
region, the Central Region and the South region. Basing on the criteria for determining the 
heat wave, we have subjectively determined 156 heat waves in the northern region for period 
of 1998–2018. For Central Region and the South region, number of found heat waves is 
respectively 204 and 69 (Table 1). 

To have data on the grid as input for the SOM method, we collected the JRA25 reanalysis 
data of JMA corresponding to the period of the aforementioned heat wave dataset. NOAA's 
NNRP2 and ECMWF's ERA–Interim reanalysis data sources were not collected due to 
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JRA25 has the higher resolution. Because it was developed by JMA, the quality of the JRA25 
data source has higher accuracy in Asia area. Since the atmospheric fields are correlated, 
using all fields in the identification is unnecessary and may give undesirable results. 
Therefore, the selection of characteristic quantities will limit the amount of work and 
computation time. Based on the knowledge of weather patterns and previous studies, in this 
study, we only collect pressure of mean sea level (PMSL) and geopotential height at 500hpa 
(H500). The PMSL used to characterize the surface hot depression and the H500 will 
characterize the Northwest Pacific Subtropical High Pressure. 

Table 1. Subjective statistics of heat waves for each of research are in Viet Nam by using criteria 
(Tx ≥ 35oC and have at least 1/2 of the surface synoptic stations in the study area satisfy the condition 
Tx ≥ 35oC at the same time) for period of 1998–2018. 

Year Northern Area Central Area Southern Area Viet Nam 

1998 5 6 1 12 

1999 4 8 1 13 

2000 3 5 0 8 

2001 2 7 0 9 

2002 1 4 2 7 

2003 8 11 4 23 

2004 5 9 2 16 

2005 4 9 1 14 

2006 8 10 2 20 

2007 6 7 5 18 

2008 8 10 2 20 

2009 8 9 2 19 

2010 15 14 7 36 

2011 6 8 2 16 

2012 11 14 4 29 

2013 7 12 7 26 

2014 11 11 6 28 

2015 16 11 5 32 

2016 13 12 11 36 

2017 9 15 2 26 

2018 6 12 3 21 

Sum 156 204 69 429 

 

2.2. Methodology 

The research flowchart is shown on Figure 1. Specifically, basing on known heat waves 
that are subjectively determined according to the given criteria, PMSL and H500 data of 
JRA25 will be normalized and selected principal components based on PCA analysis. These 
components are then fed into the SOM for analysis and the creation of a U–Matrix map. Next, 
the K–Means method is applied to find the data clusters. Finally, from the given data clusters, 
weather pattern maps for each cluster are used to find out the main weather patterns that cause 
the heat wave. Because the meteorological elements in the JRA25 dataset vary in dimension 
as well as range of variation. Therefore, the predictors must be normalized before training 
the SOM network. The set of predictors will be normalized to a new set of factors according 
to the following formula: 

X

X

x
x

 


         (1) 
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where x’ is normalized variable of x predictor, X and X respectively are simple average 
and standard deviation of x predictor that is calculated based on past dataset. After 
normalizing, x’ variable is non–dimension. 

 

Figure 1. Flowchart of using SOM and K–Means methods to classify weather patterns that cause 
summer heat wave in Viet Nam based on JRA25 reanalysis dataset. 

After normalizing the PMSL and H500 data, in order to reduce data redundancy and 
computing cost, we will not directly use the PMSL and H500 data on the grid but will analyze 
them into a series of principal components by applying PCA method. The input data for the 
PCA method is also normalized according to formula (1) as mentioned above. As a result, 
instead of including 2 × 40 × 29 variables in clustering (40 and 29 is number of JRA25 grid 
point in meridional and zonal direction), we only have to cluster the number of 15–20 
variables depending on the region. 

Basing on principal components are selected, SOM training is implemented according 
to following step by step: 

Step 1: Initializing weight vector )0(
jw  with j = 1,2, …, d* by random select in input 

dataset (D). 
Step 2: Iterating solve 
Step 3: Assign x in D with given probability value 
Step 4: Finding best fit noron i(x) in Kohonen class basing on Euclidean distance 

between vector wj and x:  )(

1
minarg)( s

j
dj

wxxi 


 

Step 5: Updating weight for all norons in out layer as following formular:
))(()( )(

)(,
)()1( s

jxij
s

j
s

j wxshsww    
Step 6: Iterating Step 2 if there is no significant change of SOM feature map (reduce 

radius of topological neighborhood at specified time) 
Step 7: Finishing and give out final SOM feature map 
The result of training the SOM network is to create two–dimensional matrix of Kohonen 

neurons in which each main neuron is a vector whose size is equal to the number of input 
neurons. Next, to create cluster boundaries in the study, we conduct use the U–Matrix 
technique combined with the K–Means algorithm. Specifically, basing on the U–Matrix map, 
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the K–Means method is applied to classify the number of possible heat wave clusters based 
on the SOM characteristics. After determining the number of possible heat wave clusters, the 
past heat wave data that subjectively determined as mentioned above will be used to classify 
each heat wave to which given clusters. After this classification step, the process of 
determining the dominant weather pattern is performed by displaying atmospheric field maps 
from the JRA25 data of each heat wave in the given cluster. The all steps to find dominant 
weather pattern that caused heat wave based on the SOM and K–Means method are shown 
in Figure 1. 

3. Results and Discussion 

Figures 2 to 4 show the origin and clustered maps of the U–matrix by applying the K–
Means method for the Northern, Central and Southern regions, respectively. Specifically, for 
the Northern region, the results have 4 clusters found corresponding to 4 groups of weather 
patterns (Figure 3). However, the degree of clustering (separation between groups) is not 
really clear. For the Central region, there are 3 data clusters found after applying the K–
Means method. For the Southern region, only 2 data clusters were found. Regarding the 
degree of distinction between clusters, the Southern region shows more clearly than the 
Northern and Central regions. Figures 5 to 7 respectively show typical weather patterns for 
each element of the matrix U with size 8 × 8 when applied to PMSL and H500 fields for the 
North, Central and Southern region, respectively. From these weather pattern maps it is 
clearer to see the degree of separation in the ground and upper–air weather pattern for each 
molecule of the U–matrix. Subjectively, the use of the weather pattern matrix as in the 
Figures 5 to 7 can also analyze and make judgments about the number of groups of weather 
patterns included in the dataset used to put into SOM analysis. 

 

Figure 2. The origin U–Matrix (left) and cluttered U–Matrix by applying K–Means method (right, 
the cluster boundary line is bold blue) for Northern region basing on JRA25 dataset in period of 
1998–2018 (the number means the cases belong the given U–Matrix element, the color palette means 
the distance of wight vector for each U–Matrix element). 

Table 2 gives the results of determining the number of heat waves in each year in the 
period 1998–2018 for each study region and compares it with the number of heat waves 
subjectively determined basing on the above criteria. The number of heat waves identified 
from SOM is less than that determined by forecaster. Specifically, for the Northern region, 
the number of heat waves detected by the SOM method accounts for about 70% of the 
subjective determination. Meanwhile in the Central and Southern regions, it is 84 and 90% 
respectively. Thus, the determination of the number of heat waves by SOM method in the 
Central and Southern regions is better than in the North. The reason for the difference is the 
number of weather pattern clusters found by K–Means. Specifically, except for the Southern 
region (the number of clusters found is equal to the number of weather patterns found 
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according to the forecaster’s analysis), the number of clusters found by K–Mean in the North 
and Central regions are less than 1 compared to the forecaster's analysis. This result may lead 
to under–estimate the number of heat waves in these regions. For the Southern region, it is 
possible that the input data will be in the interference area of the two data clusters. 

 

Figure 3. Similar to Figure 2 but for Central region. 

 

Figure 4. Similar to Figure 2 but for Southern region. 

 
Figure 5a. The significant pressure of mean sea level maps of 8 × 8 U–Matrix for Northern region. 
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Figure 5b. The significant geopotential height at 500hpa level of 8 × 8 U–Matrix for Northern region. 

 
Figure 6a. The significant pressure of mean sea level maps of 8 × 8 U–Matrix for Central region. 
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Figure 6b. The significant geopotential height at 500hpa level of 8 × 8 U–Matrix for Central region. 

 
Figure 7a. The significant pressure of mean sea level maps of 8 × 8 U–Matrix for Southern region. 
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Figure 7b. The significant geopotential height at 500hpa level of 8 × 8 U–Matrix for Southern region. 

By reanalyzing significant weather pattern maps of given clusters, we determine 
dominant weather pattern that caused heat waves in Viet Nam as following: 

1. For Northern region: Western hot depression, Northwest Pacific Subtropical High 
Pressure, South China depression and Northern cold air mass. 

2. For Central region: Western hot depression, Northwest Pacific Subtropical High 
Pressure and South–west monsoon. 

3. For southern region: Western hot depression and Northwest Pacific Subtropical High 
Pressure. 

Compared with the clusters of weather patterns determined by the forecaster, the weather 
patterns found by SOM and K–Means have similarities when only has a large–scale pattern 
caused heat wave. However, in case of association of 2 or more weather patterns with spatial 
scale differences, SOM could not be captured all cases, specially has activities of small–scale 
patterns. This is also the reason why the number of heat waves detected from the SOM is less 
than that determined by the forecaster’s experience. 

Table 2. The statistics of heat wave number in period of 1998–2018 for each research region by 
forecaster and SOM method. 

Year 
Northern Region Central Region Southern Region 

Forecaster SOM Forecaster SOM Forecaster SOM 

1998 5 3 6 5 1 1 

1999 4 3 8 7 1 1 

2000 3 2 5 4 0 0 

2001 2 2 7 5 0 0 

2002 1 1 4 4 2 1 
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Year 
Northern Region Central Region Southern Region 

Forecaster SOM Forecaster SOM Forecaster SOM 

2003 8 5 11 9 4 4 

2004 5 4 9 7 2 2 

2005 4 2 9 8 1 1 

2006 8 5 10 8 2 2 

2007 6 3 7 5 5 4 

2008 8 6 10 8 2 2 

2009 8 6 9 7 2 2 

2010 15 9 14 12 7 7 

2011 6 4 8 6 2 2 

2012 11 7 14 12 4 4 

2013 7 6 12 12 7 6 

2014 11 8 11 10 6 5 

2015 16 12 11 10 5 4 

2016 13 10 12 10 11 9 

2017 9 7 15 12 2 2 

2018 6 4 12 10 3 3 

Sum 156 109 204 171 69 62 

4. Conclusion 

The paper has been studied and applied the SOM method combined with K–Means to 
objectively classify the weather patterns that cause heat wave in Vietnam based on dataset of 
pressure of mean sea level and 500hpa geopotential height of JRA25 reanalysis in the period 
1998–2018. By using the criteria Tx ≥ 35oC and taking a large scale, there respectively were 
156 heat waves occurred in the Northern region, 204 in the Central region and 69 in the South 
in the period 1998–2018. Subjective analysis has shown that there are 5 main weather 
patterns causing heat wave in the North. For the Central and Southern regions, there are 4 
and 2 main weather patterns, respectively. In general, the heat wave occurring in all 3 areas 
is related to the activity of the western hot depression and the northwest Pacific subtropical 
high pressure. The heat wave is caused by combination of 2 or more weather patterns mainly 
occur in the North and Central regions. 

The objective classification results based on SOM and K–Means methods are most 
appropriate in the Southern region, followed by the Central and Northern regions. The 
number of heat waves detected by the SOM method is less than that determined by subjective 
methods. The reason is that the number of weather pattern clusters classified from SOM and 
K–Means is less than in subjective analysis (except for the Southern region). The SOM 
method classifies well when there is only one dominant weather pattern in large–scale. When 
there are combinations of 2 or more weather patterns and the impact of these patterns are the 
same (especially with spatial differences), classification by SOM is difficult because the data 
will be in the intersection of the clusters. To improve the research results and overcome the 
above shortcomings, we suggest that it is necessary to optimize the U–matrix size to further 
enhance the ability to capture the small–scale weather patterns when there is a combination 
of many weather patterns at different spatial scales. 
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Abstract: Along with the development of the industry in Vietnam, the beery industry has 

contributed greatly to the state budget and creating jobs for labours. However, beer 

wastewater contains high organic matter, some wastewater discharged parameters such as 

BOD, COD, Nitrogen, Phosphorus, etc. usually exceed the permitted standards. Based on 

the above practice, the research was conducted to evaluate the effectiveness of the 

horizontal flow wetland model, laboratory scale with organic loading rate varying from 

20, 40, 60, 80, 100, 120 kg COD/ha.day. The results show that the concentration of 

pollutants in the effluent can reach QCVN 40: 2011/BTNMT, column A, before 

discharged into the environment. 

Keywords: Brewery wastewater; Constructed wetland; Horizontal flow wetland. 

 

1. Introduction 

Nowadays, the demand for beer is increasing day by day. The growth of the beer 

industry contributes to increasing products for society, serving people's lives, but on the 

other hand, it also entails the problem of production waste, especially, wastewater with high 

concentration of pollution poses a serious threat to the environment [1]. The beer 

wastewater contains a large number of suspended substances, COD and BOD and high acid 

content that needs to be treated before being discharged into the receiving water source [2–

9]. All organics present in brewery wastewater are easy biodegradable. High BOD/COD 

ratio ranging from 1.5–2.0 is suitable for biological treatment [9–11]. 

Biological treatment by microalgae (Dunalilla) has reduced the organic matter content 

in wastewater [12]. The treatment of brewery wastewater through anaerobic AHR tank and 

aerobic system removed COD with 75%–97% efficiency [13–14]. A brewery (in NSW) 

[15] will undergo a number of pre–treatments, then enter the GWE ANUBIX–B anaerobic 

tank, where the COD content is treated by bacteria to reduce the organic matter 

concentration. At a traditional brewery in the city of Harare [16], the research evaluated the 

performance of the UASB tank in beer wastewater treatment. After 2 years of research, it 

was found that the use of the UASB can make the treated wastewater quality meet local 

requirements. Indicator of COD decreased by 57%, TSS and SS also decreased by 50% and 

90%, respectively. 

In Vietnam, breweries often use anaerobic, aerobic and reverse osmosis treatment 

methods to provide better removal efficiency [1–3, 11]. The combination of anaerobic 

treatment with aerobic treatment can remove 90–98% the high concentration of COD in 

brewery wastewater [3, 11]. 

In the process of industrialization and modernization, sustainable economic 

development and environmental protection are always concerned. The environmentally 

friendly treatment of industrial wastewater contributes directly or indirectly to the 
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sustainable development of a country. To that end, biological processes are considered to 

play a major role. Bioremediation uses beneficial microorganisms [17–19] and plants [20–

23] to degrade, reduce or detoxify pollutants. 

Wetland wastewater treatment model is a method with many advantages, especially it 

is very suitable for Vietnamese conditions due to low construction and operating costs [20–

23]. Mechanisms of wastewater treatment of wetlands include sedimentation, precipitation, 

chemisorption, microbial metabolism, and plant uptake [11]. Pollutants can be removed by 

multiple mechanisms simultaneously in the system. Many studies show that wetlands have 

the ability to treat wastewater with high concentration of nutrients such as domestic 

wastewater, industrial wastewater, agricultural wastewater, leachate... [24–28]. A study 

[25] in 2014 treated turbidity, DO, BOD5, TP, TN very effectively with the average 

treatment efficiency of 94%, 86%, 80%, 88%, and 94%, respectyvly The research [26] 

conducted in 2018 with leachate after being biologically treated with a COD concentration 

of 575 mg/l passing through the wetland system, the BOD5 treatment efficiency reached 

96.48%, COD 83.24%, total N 91.43%, total P 77.84%, NH4
+ 86.47%, color 87.91%. The 

wetland model of [28] was carried out to evaluate the growth and absorption of nitrogen 

and phosphorus added in the wastewater of intensive farming ponds of catfish using 

Hymenachne acutigluma with treatment efficiency TN, TP reached 80–84.8% and 93.3–

95.6%, respectively. 

Brewery wastewater contains high organic composition, wide pH range, remarkable 

TSS, Nitrogen, Phosphorus, Coliform content. When using traditional wastewater treatment 

technologies, it often costs a lot to invest in construction, chemicals as well as operation 

and maintenance. Many research works on constructed wetland technology show that this 

technology is completely in harmony with nature, does not generate a lot of secondary 

waste, has low investment costs, treat many types of wastewater from low to high loads, 

using a variety of available, easy–to–find natural plants. This technology can also handle 

nutrients (Nitrogen, Phosphorus). Plants after treatment from constructed wetlands can be 

used for different purposes such as forage, improving the local landscape. 

 In addition, Colocasia esculenta and Caladium bicolor are easy to find plants and has 

suitable characteristics for water purification such as growing well in flooded, polluted 

environments and having strong roots [29]. Therefore, this study evaluates the treatment 

efficiency of COD, TN, TP, TSS, Coliform of the horizontal-flow constructed wetland 

model at different loads with Colocasia esculenta and Caladium bicolor. 

2. Materials and Methods 

2.1. Objects, scope of research 

Objects: Brewery wastewater of Heineken, laboratory model of constructed wetland 

with Colocasia esculenta and Caladium bicolor. 

Scope: Laboratory scale. 

2.2. Model 

Laboratory scale of horizontal flow wetland model is made of 10mm thick glass. There 

are 3 models including: 

- Blank model (without growing aquatic plants) – (BL) 

- Model of planting Colocasia esculenta – (CE) 

- Model of planting Caladium bicolor – (CB) 

All 3 models are designed with the same tank size: length x width x height = 2.0m × 

0.6m × 0.5m, length: width ratio is 3: 1 [30]. The bottom of the tank is arranged with a 

slope of 1% to ensure that the treated wastewater is completely collected [31]. The model 
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has an external stainless-steel frame to increase the bearing capacity of the tank. On the side 

of the tank, there is an outlet pipe with a diameter of 27 mm that brings the effluent out.  

Each model consists of 3 layers of materials arranged in a certain sequence [24, 29]: 

- The top layer is a layer of fine sand with a diameter of 1–2 mm and a layer of soil 

with a total height of 150 mm. This layer of material is responsible for the main 

environment for plant roots to attach and develop. 

- The middle layer is a layer of round gravel with a diameter of 5–10 mm, the height of 

this layer is 150 mm. The main task of gravel is to serve as a substrate for microorganisms 

to attach and grow, and a support layer for the fine sand layer and the upper soil layer. 

- The bottom layer is a 10×20 mm rock layer, 100 mm high. The main task of the rock 

layer is to serve as a substrate for microorganisms to attach and grow, and at the same time 

a support layer for the gravel, fine sand and the upper soil layer. 

The model of planting Colocasia esculenta and the model of planting Caladium 

bicolor are arranged in 2 different tanks, in continuous process, in natural conditions and 

started at the same time, following the operation parameters in Table 1. 

 

Figure 1. Experimental layout diagram. 

 

Figure 2. Research models. 
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Table 1. The operation parameters of 2 model. 

No. 
Organic loading rate (OLR) 

(kgCOD/ha.day) 

Influent flowrate 

Q (L/day) 

Hydraulic 

Retention time 

 (day) 

1 20 7,6 18 

2 40 15,2 9 

3 60 22,8 6 

4 80 30,4 4.5 

5 100 38,0 3.6 

6 120 45,6 3 

3. Results and Discussion 

3.1. The variation of pH value in models 

The pH value in the effluent of all 3 models ranged from 6.8–7.6 (7.1 ± 0.2) for the 

blank model, 7.0–7.8 (7.4 ± 0.19) for the CB model and 7.0–7.7 (7.3 ± 0.2) for CE model. 

In general, the pH value fluctuated around neutral values (7.1–7.4) that can meet column A 

of QCVN 40:2011/BTNMT (pH = 6–9) and suitable for plant growth (Figure 3). 

 
Figure 3. Variation of pH value during experiment. 

3.2. The variation of COD removal efficiency 

Figure 4 shows that the highest COD treatment efficiency of the model is 85% (CB 

model), 84% (CE model) compared to the blank model, only 29%. COD treatment 

efficiency increase steadily through the loads and reached at the highest efficiency at 

organic load of 80 kg COD/ha.day for Caladium bicolor and at 100 kg COD/ha.day for 

Colocasia esculenta. The reason are quickly growth of plants and microorganisms leading 

to increase the absorption organic matter. Compared with QCVN 40:2008/MONRE, the 

effluent COD concentrations of both planting models can meet the standard and the blank 

model is not. This result is quite similar to the research results of [29] but is lower than the 

research of [31], the COD removal efficiency can reach 95% when using Canna hybrids.  
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Figure 4. Variation of COD treatment efficiency at different loads. 

3.3. The variation of TSS values 

In the loading period of 60–80 kg COD/ha.day, TSS concentration in the influent 

fluctuates in the range of 119.2–143.8 mg/L, but TSS concentration of effluent ranges from 

14–47 mg/L (CB model) and 13–44 mg/L (CE model) compared with 61–97 mg/L (blank 

model). The results of TSS values of the CB, CE model can meet the standards of QCVN 

40: 2011/MONRE. The TSS removal efficiency was highest for the CB model (89.2%) and 

the CE model (88.4%) and compared with the blank model (48.6%). This result is quite 

similar to the other results, the TSS removal efficiency is from 47%–96% [29] and 88–92% 

[31], respectively. 

 
Figure 5. Variation of TSS values in wastewater at different loads. 
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microorganisms attached to the filter material, the TN removal efficiency is lower. At loads 

of 80 kg COD/ha.day and 100 kg COD/ha.day those are the period of strong growth plant 

combined with more nitrifying and denitrifying microorganisms, the concentration of TN is 

mainly reduced due to nitrification and denitrification process. The TN values in the 

effluent of two planting models reached at QCVN 14:2008/MONRE, column A. This 

removal efficiency is lower than the results of [29], but is higher than the results of [31]: the 

TN removal efficiency is around 70%. 

 

Figure 6. Variation of TN treatment efficiency at different loads. 

3.5. The variation of Total Phosphorous (TP) removal efficiency 

 

Figure 7. Variation of TP removal efficiency at different loads. 
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In general, TP treatment efficiency tends to increase with sampling times, the highest 

efficiency is 76% (Colocasia esculenta) and 74% (Caladium bicolor) and only about 29% 

compared to the blank model. The results are similar with the result of [21] treatment 

brewery wastewater with Typha latifolia. 

Phosphorus is well reduced in the model by adsorbed by the roots and by adsorbent 

media. At the same time, the absorption and settling mechanism is enhanced by the mineral 

content in the filter material. They also use phosphorus as a substrate in the system. 

Comparing the total phosphorus concentration in effluent using Caladium bicolor and 

Colocasia esculenta with those of QCVN 40:2011/MONRE, both achieved column A. 

3.6. The variation of Coliform value 

 

Figure 8. Variation of Coliform treatment efficiency at different loads. 

The total Coliform removal efficiency of the wetland model for the Caladium bicolor 

model is 87–99%, the Colocasia esculenta model is 88–99% compared to the blank model 
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gradually decreased when operating at higher organic loads because the retention time at 
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models can meet the QCVN 40: 2011/MONRE (column A). 

The average treatment efficiency (95%) to remove Coliform in this experiment is also 

consistent with the study [29], the total Coliform efficiency is high and low volatility, stable 

in the range of 94% to 99%. 

3.7. Plant growth process 
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Figure 9. Tree height growth chart 

 

Figure 10. The growth chart of the number of branches 

4. Conclusions 

The number of pollutants in the brewery wastewater after treatment by constructed 

wetland has been significantly reduced. Treatment efficiency was highest at 80 kg 

COD/ha.day for the Caladium bicolor and 100 kg COD/ha.day for the Colocasia esculenta. 

Specific treatment efficiency is as follow: COD 84–85%, TSS 88–89%, TN 72–75%, TP 

74–76% and total coliform > 90%. The difference between the treatment efficiency of the 

Colocasia esculenta and the Caladium bicolor is not significant (from 2–3%).  

- It is necessary to continue to study the effectiveness of brewery wastewater treatment 

with higher loads, with other plant species and build a pilot model to apply this research in 

practice. 
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- It is necessary for further study the Caladium bicolor and the Colocasia esculenta in 

the treatment of other types of wastewaters to find out the other pollutant removal 

capabilities of these two plants. 
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Abstract: This paper presents the results of analyzing land subsidence in Tra Vinh province 

in the period of 2015–2019 by using InSAR interference from Big Data of Sentinel–1 

satellite radar and ground measurement data to understand the impact of urbanization and 

groundwater exploitation on land subsidence in the area research. In the period from 2015 

to 2019 in Tra Vinh city, there are areas with annual subsidence rate of about 1 cm/year 

while in Dan Thanh commune, Duyen Hai district subsidence rate is up to 3 cm/year. One 

of the reasons for such rapid land subsidence is the excessive exploitation of underground 

water in these areas, especially in Dan Thanh commune, Duyen Hai district. 

Keywords: Mekong; Tra Vinh; Subsidence; InSAR; Sentinel–1. 
 

1. Introduction 

The countries in the Mekong region, and specifically Vietnam, are among the most 

affected by climate change. Consequently, the mean temperature is raised and the sea level 

has risen. One of the big environment impacts is the regional water–pumping induced land 

subsidence. Combined with the sea level rise due to global climate change, the land 

subsidence directly impacts a variety of hazards which can be associated with subsurface 

saline intrusion [1–2], and increases in the depth and duration of annual flooding [3]. In 

response to these challenges, besides climate change adaptation, the knowledge of the ground 

subsidence such as their spatial extent and their temporal evolution is essential.   

Although traditional ground–based measurement methods such as Global Navigation 

Satellites System (GNSS such as GPS) and Geodetic Levelling can be made locally, remote 

sensing observations are essential for mapping spatial extent and temporal evolution of land 

subsidence over large regions. Large scale land subsidence can be measured using satellite–

based SAR imagery processed by interferometry (InSAR) with high accuracy from space [3–

7]. Since 2014, the Sentinel–1 satellite provides open access and systematic data (in Terrain 

Observation with Progressive Scan (TOPS) mode) with 6-day revisit and 20 m spatial 

resolution [8]. However, TOPS Sentinel–1A/1B phase is very sensitive to geometric errors. 

In case of a small misregistration error between a pair of images, this residual term leads to 

a phase jump in the interferometric phase. Due to this limitation, doing TOPS interferometry 

needs extremely high co–registration requirements (e.g., an accuracy of 0.001 pixel in 
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azimuth direction) have to be met [9]. Thus, Although Sentinel–1 data offers the best 

opportunity for land subsidence monitoring, it is challenge to do InSAR processing.  

In this paper, we will study on using InSAR techniques to determinate the land 

subsidence in the Mekong Delta. The work will be focused on the Tra Vinh, a typical coastal 

province in the delta, to demonstrate the feasibility of Sentinel–1 data.  

2. Materials and Methods 

2.1. Description of study site 

Tra Vinh province, in the Mekong Delta, is one of the most biologically diverse and 

agricultural regions in the world, but sea level rise, land subsidence, upstream hydropower 

dam construction and rapid urbanization are the main causes affecting the hydrological, 

hydraulic, and sediment transport regimes of the whole area. Tra Vinh is located at the end 

of the island sandwiched between the Tien Giang and Hau Giang rivers. The terrain is mainly 

flat land with elevation of about 1m above sea level. In the coastal plain, there should be sand 

dunes, running continuously in an arc and parallel to the coast. The further to the sea, the 

higher and wider these mounds are. Due to the division by the hills and the system of roads 

and canals, the terrain of the whole region is quite complicated. Low-lying areas are 

interspersed with high hills, the slope trend is only shown in each field. Particularly, the 

southern part of the province is lowland, divided by bow-shaped sand varieties into many 

local low-lying areas, many places are only at an altitude of 0.5-0.8 m, so it is often flooded 

with salt water by 0.4 m per year -0.8 m for a period of 3-5 months. The average tidal 

amplitude of the east coast of Tra Vinh province fluctuates around 2m. Therefore, the delta 

of Tra Vinh is very vulnerable to land subsidence due to many reasons, in which special 

attention is paid to the causes of groundwater extraction, urbanization and change of shoreline 

due to the influence of the sea. The change of hydraulic regime, hydrology and sea level rise 

due to global climate change. More importantly, these two factors are directly responsible 

for many hazards such as saltwater intrusion on the surface and underground [1], increased 

altitude and timing of annual floods [3] and natural arsenic contamination [2]. This really 

causes concern for policy makers, managers and people living in Tra Vinh Province in 

particular and the Mekong Delta in general. 

91% of Tra Vinh’s water source for daily life and production is exploited from 

groundwater. Groundwater in the Mekong Delta including Tra Vinh is extracted from several 

aquifers ranging from Holocene to Miocene, in which deep aquifers are exploited the most 

[10]. When groundwater is extracted, the pore pressure decreases and the sediments undergo 

compression, which causes land subsidence. In order to determine the subsidence 

phenomenon as well as the subsidence speed, direct measurement methods such as geometric 

leveling, GNSS are used in small area, besides remote sensing methods such as: use LiDAR 

data from unmanned aerial vehicle (UAV) sensors or use radar remote sensing images to 

determine subsidence and its evolution over time for areas wide. 

2.2. Methodology 

Let φn =
4π

λ
Rn  represent the unwrapped interferometric phase, where R n  is the 

distance between the target and the n–th orbit acquisition, λ is the carrier wavelength. Then, 

φn  is composed of the phase components related to deformation, residual topography, 

atmosphere, and noise [11]:  

φn =  φdefo
n +  φtopo

n +  φatmo
n +  φnoise

n  + 2kπ                     (1) 

where φdefo
n  is the deformation phase, φtopo

n  is the residual topographic phase, φatmo
n  

is the atmospheric phase, φnoise
n  is the phase noise, and k is an integer ambiguity number. 
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The goal is to estimate the deformation phase, which can be written as follows (assuming a 

constant velocity model):  

n n
defo

4
v


 =


                       (2) 

where v is the mean deformation light of sight velocity of the target, and tn is the 

temporal baseline. The residual topographic phase is given as follows: 

n n
topo

4 b
h

sin R


 = 

 
                       (3) 

where ∆h is the residual topography, and θ is the local incidence angle, bn is the normal 

baseline. The atmospheric phase is the delay of the signal due to weather conditions. The 

phase noise is due to temporal decorrelation, mis–coregistration, uncompensated spectral 

shift decorrelation, orbital errors, and thermal noise.  

In the conventional spaceborne InSAR, which uses two SAR acquisitions to calculate 

the interferometric phase, the technique has issues relative to atmospheric, spatial and 

temporal decorrelations [12]. These parameters can only be overcome by a specific analysis 

considering phase changes in a series of SAR images acquired at different times over the 

same region. In fact, multi–temporal Interferometry SAR approach [3–4, 6, 13,] is well–

known for its ability to measure subsidence. Particular in [13], he proposed a Maximum 

Likelihood Estimator (MLE) approach which can jointly exploits all N(N–1)/2 

interferograms available from N images, in order to squeeze the best estimates of the N–1 

interferometric phases. In this fashion, we can exploit not only persistent scatters (PS) but 

also distributed scatters (DS) information for estimating the deformation. Such increased 

number of identified PS/DS points on the ground results at an increased confidence of the 

ground motion, compared to the previous PS algorithm [3]. The reader is referred to [3–4] 

for the full descriptions of the processing chain. The results are processed by the TomoSAR 

platform which offers SAR, InSAR and tomography processing [14].  

2.3. Data collection 

Tra Vinh is located in the delta area of the Mekong. The water for domestic and industrial 

use in Tra Vinh comes from wells located within and around the city. The heavy pumping of 

groundwater has produced a serious settlement problem, which in turn has affected surface 

structures in the city of Tra Vinh. Figure 1 reports our study area.  

 

Figure 1. Tra Vinh study area coveraged about 80 km × 80 km. The background image is the SAR 

intensity. 
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The SAR stack is from Copernicus Sentinel–1 C–band 2015–2019. To reduce the 

dimensional of the computational data, we selected a good image for each month, resulting 

55 images for PS/DS processing. The baseline distribution is shown in Figure 2.   

 

Figure 2. Baseline history of the 55 Sentinel–1 SAR images. 

3. Results and Discussions 

First of all, to provide better understand the presence of the stable points, we calculate 

the coherence of the stack and report in Figure 3. 

 

Figure 3. The average velocity trend: Positive velocities (green colors) represent movement uplift; 

negative velocities (red colors) represent movement subsidence. 

The SAR data stack was then processed by using the MLE PS/DS approach. By 

exploiting the phase information at the PS/DS only, we are able to unwrap all the 

interferograms. In Figure 4, the unwrapped phase mostly varies from –2π to +2π. By 

inversion all the unwrapped interferogram, the average velocity (mm/yr) can be determined 

as in Figure 5. Positive velocities (blue colors) represent movement uplift; negative velocities 

(red colors) represent movement subsidence. 
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Figure 4. The unwrapped interferogram. The reference date of calculation is 21 July 2015. 

 

Figure 5. The average velocity trend. Positive velocities (blue colors) represent movement uplift; 

negative velocities (red colors) represent movement subsidence. The subsidence history is also 

provide to appreciation the displacement information. 

–2π +2π
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Figure 6. A zoom version of Figure 5 at the Quan Chanh Bo channel. 

4. Conclusions 

First of all, in figure 3, we can observe that the average coherence of each image ranges 

from 2.5 to less than 0.5. This indicates the areas is quite challenge for InSAR processing 

due to less stable measurement points and low coherent signals. However, as the culture of 

the Mekong, people habitant along the road and river channels, resulting in many scatters can 

be detected for InSAR processing. This phenomenon is very visible in Figure 5. Thus, we 

were able to map the subsidence for the whole Tra Vinh.  

The average velocity varied from –30 to 10 mm/year. The subsidence phenomena were 

found mostly in the costal of the sea (the east of the province). Particularly, red pixels 

correspond to subsidence of nearly 12 cm, from 2015 to 2019, averaging 27.8 mm/yr (see the 

dots in Figure 6). For comparison, pixels near Soc Trang exhibit an average of 3.3 mm/yr 

(bottom left plot Figure 5). 

The main reason of subsidence of Tra Vinh can be divided into two main kinds. The first 

kind is natural reason and the other one is artificial reason. Natural reasons include compact 

sediment, seasonal fluctuation of groundwater and soft soil layers. The artificial reasons 

include exploitation groundwater; loading capacity by building or levelling; dynamic loading 

by transportation or under construction building; and suffusion, quicksand negative skin 

friction. Related to artificial reason, exploitation groundwater pumping wells is most 

affected.  

Groundwater in the Tra Vinh delta is widely pumped from several aquifers ranging from 

Holocene to Miocene age, where deep aquifers are the most heavily exploited [10]. When 

groundwater is extracted, pore pressures are reduced and sedimentary layers undergo 

compaction that can be measured as land subsidence. One of the reasons for such rapid land 

subsidence is the excessive exploitation of underground water in these areas, especially in 

Dan Thanh commune, Duyen Hai district. 

To conclude, the ground deformation result from SAR of the period 2015–2019 in Tra 

Vinh describes exactly the subsidence area. This can help to identify hotpot subsidence areas. 

By using PS/DS processing, it can provide not only the average velocity of ground subsidence 

but also the subsidence history information. Future works need to focus on validation and 

also to evaluate the subsidence effects to sea–level rise due to global climate change. Finally, 

this work has a proof concept on the feasibility of measurement of subsidence for the Delta–

wide based on Sentinel–1 data. 
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Abstract: Runoff reduction is the goal of soil and water conservation in agricultural 

watersheds. Through the runoff, many substances of soil such as sediment, nutrients have 

been eroded to end up in streams, rivers, and lakes. In decades, studies have revealed various 

mitigation, including structure and non–structure conservation ranging from field scale to 

watershed scale. However, the challenges for effectiveness improvement have increased in 

recent years within the impacts of anthropogenic activities such as land use land cover 

change and fluctuation in weather conditions. As a result, the runoff generation has been 

changing in both terms of quantitative and variable sources areas of runoff generation. From 

the understanding of runoff generation mechanisms, including infiltration excess and 

saturation excess, this study was conducted with the objective to propose an application of 

the Soil Topographic Index (STI) and the Soil Conservation Service Curve Number (SCS–

CN) in identifying the areas with high runoff propensity. The method utilized GIS–based 

indices to indicate the high runoff potential areas. The ranking maps were evaluated by 

Wilcoxon rank sum test and Getis–Ord Gi* spatial statistics. Results demonstrated that there 

was a statistical significance of the greater STI in inundated cultivation than STI in 

cultivation areas. However, STI values were not statistically significant in pasture areas. 

Alternatively, the combination of STI and SCS–CN detected the statistical significance 

between calculated indices and inundated observed areas. In conclusion, the combination 

between STI and SCS–CN values is a potential method in redefining runoff generation hot 

spots.  

Keywords: Runoff generation mechanism; SCS–Curve number; Soil topographic index; 

Ranking approaches; Hot spots and cold spots. 
 

1. Introduction 

Runoff and agricultural best management practices (Agricultural BMPs) in soil and 

water conservation has been a research topic for decades. In 1979, agricultural BMPs    

controlling runoff resulted in effectiveness of agricultural BMPs was pointed out [1]. 

Accordingly, the appropriate agricultural BMPs is the lining up between types and purposes 

of BMPs, which is relevant to the term of targeted conservation, recently. For this reason, the 

misleading in runoff generation which may cause inaccuracy in identifying high runoff areas 

has been mentioned in some researches. Since then, many of researches with the purposes to 

fill the deficiency between BMPs design and the runoff generation mechanisms have been 

conducted [2–3]. Most recently, 7Rs – Right product, right conservation practices, right 
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place, right scale, right rate, right method, and right time – again plays an important role in 

precision of soil and water conservation [4].  

Subsequently, there has been many studies concerning either differentiation or 

combination between infiltration excess and/or saturation excess in runoff generation 

mechanisms, which influence the results of runoff generation in term of temporal scales and 

variable sources areas of runoff proneness [2, 5–10]. Importantly, the implication that the 

Soil Conservation Service Curve Number approach (SCS–CN method) should not be applied 

in the manner of only infiltration excess and excluding of saturation excess amongst many 

debates about the application of SCS–CN in rainfall–runoff model [8, 11].  

Therefore, in this study, quantitative indices inferring qualitative rank of runoff 

generation were proposed with the approach of hot spots emergence mechanisms. Hot spot 

definition was initially proposed in 2003 [12]. The concept of hot spots are areas that show 

disproportionately high reaction rates related to the surrounding area (or matrix). Hot 

moments are short periods of time that show disproportionately high rates relative to longer 

intervention time periods. Emergence of hot spot hot moments highlighted the heterogeneity 

characteristics of the phenomenon. Hot spot means the spatial intensive concentration of 

phenomenon at high rate, and hot moment refers to the temporal dimension, during periods 

of time the phenomenon was enhanced. Hot spots and hot moments may overlap or separate. 

Most importantly, hot spots identification strongly depends on generating mechanisms. In 

other word, the meaning of understanding the mechanism is that it can be utilized to predict 

hot spots in the future [12].  

In this research, runoff occurrence was considered a hot spot–hot moment approach due 

to similarity in disproportionately insightful emerged mechanism. Therefore, utilizing the hot 

spots emergence mechanism to contribute the research methodology is a potential approach. 

Also, hot spot theory can apply to emerge the hot spots of critical source areas of sediment, 

nitrogen and phosphorus. The second condition is the spatial scale and temporal scale which 

are the considerable factors in hot spots identification. For instance, the forming of surface 

runoff depends on the integrated impacts of topology, rainfall, soil profile and crop–scape in 

agricultural watersheds. The high runoff propensity area is the area that satisfies all the high 

conditions of four features. Therefore, the ultimate distribution of high runoff areas is defined 

as the areas within the overlapping of these characteristics. 

GIS – based indices application has not been a new approach but there is still a lack of 

using GIS – based indices to propose the hot spots of runoff generation mechanisms in 

combination of SCS – Curve number approach and the Soil Topographic Index (STI). From 

the perspective of runoff generation mechanisms, including infiltration excess and saturation 

excess, this study is conducted with the objective to propose an application of GIS – based 

indices in identifying the areas with high runoff tendency. The study focuses on answering 

the question of how to precisely define the high runoff areas in order to propose a suitable 

soil and water conservation practices and explicit placement of agricultural BMPs. In order 

to answer the research question, the analogy of combination SCS–CN and STI was proposed.  

2. Methodology  

Study area was Callahan Creek watershed in Boone County in Missouri with the area 

approximately 21,960 acres (89 km2). Location of the basin was as in figure 1. The land use 

land cover (LULC) types mainly comprise forestry and agricultural areas such as corn, 

soybean, winter wheat, hay, grass, pasture, and deciduous forest. Also, this area is one of PL–

566 watershed projects – The Watershed Protection and Flood Prevention Act.  

The Digital Elevation Model (DEM) was downloaded from the U.S. Geological Survey 

(USGS) database and soil survey data, land use land cover from the U.S. Department of 

Agriculture (USDA) cropland database at 30m × 30m resolution. The record of inundated 

areas for Missouri and Illinois in May and June 2019 from National Agricultural Statistic 
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Services (USDA–NASS) was employed as observed data. The observed inundated 

cultivation and inundated pasture in this area was extracted; afterward, this observed data 

was converted to point vector data by GIS toolboxes in order to analyze attribute data and 

execute statistical hypotheses test by R packages.  

 

Figure 1. Location of Callahan basin (on the left) and inundated map of Callahan basin (on the right), 

Boone County, Missouri. 

In this study, a proposed approach is that the curve number method can contribute to 

qualitative evaluation in the linkage of hydrologic soil groups, land–use types, and the 

condition of land cover. SCS–CN method was applied by the U.S. Department of Agriculture 

(USDA) in 1972, SCS–CN values indicate the linkage of soil types, antecedent moisture 

condition, land use types, and surface conditions [13]. Employing SCS–CN to produce runoff 

map was mentioned in previous study [14]. Subsequently, the STI was originally developed 

based on the Topographic Wetness Index (TWI) which was respectively published in 1979, 

2000 and 2002 [9, 10, 15]. This index demonstrated interaction between topography and soil 

physical features such as depth of soil and saturated hydraulic conductivity. Applying TWI 

to produce runoff ranking map was proposed in studies [3] and other indexes for targeted 

agricultural BMPs was also mentioned [16]. Most significant, the Soil Topographic index 

(STI) was explained and applied in previous studies [9, 17, 18]. According to, STI was 

calculated as in formulation (1): 

                                                    STI = ln (
αi

tan(βi)ksD
)                       (1) 

where STI is soil topography index; αi is upslope contributing area per unit contour 

length (m); tan(βi) is the local surface topographic slope; ks is the mean saturated hydraulic 

conductivity of the soil (m/day); and D is the soil depth to restrictive layer (m). 

After that, the calculated raster data was executed spatial join with the SCS–CN and 

converted to point vector data, employing the explanation and the guidelines from USDA in 

1986 to identify suitable curve number values [13]. Accordingly, there are four different 

types of SCS–CN values depending on Hydrologic Soil Group (HSGs) in drained conditions 

and LULC conditions. The first letter in the dual HSGs applies to the drained condition, the 

second letter in the dual HSG applies to the undrained condition. As a result, there were four 

different scenarios of SCS–CN values according to the combination of draining conditions 

and LULC conditions. However, the study compared the observed inundated maps at the 

time in which the extreme inundated event occurred in May of 2019. Therefore, the others 
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scenarios were eliminated, only SCS–CN values of undrained condition and LULC in poor 

condition were taken into evaluation. 

Notably, there were inconsistency between LULC map and observed inundated map. 

There were 25 LULC types, while only 6 reclassified types of inundated areas were in the 

inundated areas map.  For example, the deciduous forest in LULC data were reclassified into 

6 different types in inundated map which were inundated cultivation, cultivation, inundated 

pasture, pasture, other, and water areas. Beside the uncertainty of LULC and flooding map, 

the assumption which were HSGs, LULC, saturated hydraulic conductivity, depth to 

restrictive layer of the soil in mean values and depth to restrictive layer as in the soil survey 

database were assigned to calculate STI indices and determine SCS–CN values. Ideally, these 

parameters should be as realistic as possible to reduce uncertainty in calibration. 

In spatial statistic, three distinctions of ranking approaches were proposed and assessed 

by Getis–Ord Gi* hotspots z scores developed by Getis and Ord to analyze spatial patterns 

[19–21]. Spatial autocorrelation was developed based on the first law of geography which is 

“everything is related to everything else, but near things are more related than distant things” 

[22]. Getis–Ord Gi* scores were calculated to illustrate the spatial autocorrelation, though 

this statistic cannot interpret the reason why locations that have statistically significant hot 

spots or cold spots. In other words, this method cannot identify the mechanism which causes 

hot spots or cold spots. In this study, this approach was utilized to clarify the number and the 

location of hot spots. Above all, hot spots of three distinct ranking approaches infer the three 

STI and SCS–CN combinations. Finally, the three distinguished distributions of calculated 

hot spots were compared with the distribution of observed inundated data.  

3. Results and Discussions 

Subsequently, the STI index of Callahan Creek ranged from 3.4 to 27.5 (Figure 2). The 

interpretation is that the higher STI and SCS–CN values represent the higher runoff potential. 

STI distribution was highly skewed to the right which is not normal distribution with the 

density curve is not symmetric and bell–shaped. Quantile plot of SCS–CN values describing 

poor and undrained condition in inundated areas and other types in flooding map evidenced 

a non–normal distribution. The plots indicated the systematic deviations from a straight line. 

Outliers appeared as points that were far away from the overall pattern of the plot. Therefore, 

the statistical method of non–parametric approach was appropriate in these conditions. 

The attribute data obtained two types of variables, including numerical variables and 

categories variables. SCS–CN and STI are numerical variables. The inundated areas of 

flooding map such as cultivation and pasture are categories variables. According to the 

quantile plot of the variables, variable distributions are not normal distributions. Therefore, 

the non–parametric test which are Kruskal Wallis rank sum test, Wilcoxon rank sum test, 

bootstrapping interval confidence calculation were applied to compare between inundated 

areas and out of inundated areas. Spatial point data using Getis – Ord Gi* hot spot was applied 

to identify significant hot spots. The principles of combination between SCS–CN and STI 

were summarized as in figure 3.  

In this proposed method, observation data of inundated areas was important since it was 

utilized to assess the accuracy of the proposed indices. In observed data, each pixel 

represented the condition of inundated areas. In this study area, the inundated map recorded 

the historical inundated of Missouri in May 2019. Accordingly, the inundated areas mainly 

distributed in the cultivated areas and pasture areas. This distribution not only occurred in 

nearly streamflow location. The higher SCS–CN and STI inferred the higher potential of 

runoff. In this study, the condition of LULC at the recorded extreme event was dramatically 

poor condition without cover crops and low capacity of drainage condition. 
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Figure 2. Narrative description of STI and SCS–CN values in poor and undrained conditions. 

 

Figure 3. The proposed method of combination between SCS–CN and STI. 

Comparing median values between STI inundated areas and STI out of inundated areas 

illustrated that there was a significant difference between STI and SCS–CN in poor and 

undrained condition of all groups. The Null hypothesis was that median of STI in inundated 

areas and median out of inundated areas were equal. The alternative hypothesis was that 

median in inundated areas was different from median out of inundated areas. Figure 4a 

revealed that p value proved statistically significant difference in pair comparisons of STI 

between inundated cultivation and cultivation, inundated pasture and inundated cultivation, 

cultivation and pasture. However, STI between inundated pasture and pasture were not 

different. Figure 4b revealed that p value indicated statistically significant difference in pair 

comparisons of all SCS–CN in poor and undrained condition, but SCS–CN in inundated areas 

were less than those of drained areas. Figure 4c, density distribution highlighted the higher 

values of STI in inundated cultivation in comparison to STI in cultivation. In contrast, figure 

4d revealed the lower values of SCS–CN in inundated cultivation. 
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Figure 4. Kruskal–Wallis rank sum test: (a) Kruskal–Wallis test of STI in 4 types of flooding maps; 

(b) Kruskal–Wallis test of SCS–CN in poor and undrained condition in 4 types of flooding maps; (c) 

Density distribution of STI in cultivation and inundated cultivation; (d) Density distribution of SCS–

CN in cultivation and inundated cultivation. 

Table 1. Wilcoxon rank sum test in pair comparison. 

Wilcoxon rank sum test in the undrained condition 

Variables Group x Group y W p–value 
Alternative 

Hypothesis 

STI Inundated_Cultivation Cultivation 721189 0.0005622 Greater 

PoorCN Inundated_Cultivation Cultivation 375646 9.25E–16 Less 

PoorCN Inundated_Pasture Pasture 19321152 2.20E–16 Less 

In order to evaluate in pair comparison, Wilcoxon rank sum test computed the value of 

p as in Table 1. In STI comparison between inundated cultivation and cultivation, p value 

was 0.0005622, the null hypotheses were rejected and the alternative hypotheses that medians 

of STI distributions for inundated cultivation were statistically significant and greater than 
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that of cultivation areas. It means that the STI distributions for inundated cultivation are likely 

shifted to the right of the STI distributions for cultivation. In SCS–CN evaluation, p values 

are < 2.2e–16, the null hypotheses were rejected and the alternative hypotheses that medians 

of SCS–CN values distributions for inundated cultivation were statistically significant and 

less than those of cultivation and pasture. It means that the SCS–CN values distributions for 

inundated cultivation and inundated pasture are likely shifted to the left of the SCS–CN 

distributions for cultivation and pasture. It infers that SCS–CN values in all cases of 

inundated areas were less than those of drained areas.  

Bootstrap confidence interval calculations in table 2 emphasized the similarity to 

Wilcoxon rank sum test. Only confidence interval of STI between inundated cultivation and 

cultivation were less than 0, bootstrap confidence interval based on 10,000 bootstrap replicate 

times were –0.73851. The others results were greater than or equal to 0. These results 

reinforced the hypothesis that STI in inundated cultivation were higher than STI values in 

cultivation areas.  

Table 2. Bootstrap confidence interval based on 10000 bootstrap replicates. 

Variables Group 1 Group 2 Resample Original BootBias BootSE Method BootMed 

STI Inundated_Cultivation Cultivation 10000 –0.73623 0.003979 0.21386 Med diff –0.73851 

STI Inundated_Pasture Pasture 10000 0.0188 0.002326 0.063783 Med diff 0.01735 

PoorCN Inundated_Cultivation Cultivation 10000 1 0.0524 0.38369 Med diff 1 

PoorCN Inundated_Pasture Pasture 10000 0 0.56395 1.1 Med diff 0 

The previous results clarified that separately applied STI and SCS–CN values 

insufficiently reflected the complex mechanisms of runoff generation in a basin. It is crucial 

to appropriately assemble indices to expose the underlying dynamic processes. Thus, STI and 

SCS–CN in poor and undrained condition were unified to highlight the trend.  In figure 5, 

the boxplot comparison of STI and SCS–CN in poor condition between inundated cultivation 

and cultivation in undrained condition indicated that the p value of Wilcoxon rank sum test 

at SCS–CN 90 was significant. For the inundated pasture, p values of Wilcoxon rank sum 

test at SCS–CN 78 and 79 were significant. At SCS–CN 71, 82, 86, STI of pasture were 

higher than STI of inundated pasture. 
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Figure 5. Parallel comparison of STI and SCS–CN in poor and undrained condition; (a) Wilcoxon 

rank sum test of STI in pairs inundated cultivation and cultivation in each SCS–CN value; (b) 

Wilcoxon rank sum test of STI in pairs inundated pasture and pasture in each SCS–CN value.  

According to the validated results, there were three different ranking approaches. The 

first ranking was solely based on STI values, the second approach was from STI ranking 

which was based on the rank of SCS–CN in poor and undrained condition, the third approach 

was from the ranking in each SCS–CN in poor and undrained condition. Subsequently, Getis–

Ord Gi* hotspots were calculated in each ranking map utilizing GIS toolboxes. In the first 

approach (Figure 6), correlation coefficient between STI and STI ranking was 1 because the 

ranking was only based on STI values. This ranking simplified that a point with a larger STI 

represented a higher STI ranking. Overall, the STI ranking changed exponentially with the 

STI values from SCS–CN 58 to SCS–CN 99. Curve number values did not affect this type 

of ranking. 

 

Figure 6a. STI values and Ranking of STI. 
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Figure 6b. STI values and Ranking based on Ranking of SCS–CN in poor and undrained condition. 

 

Figure 7. STI based on each CN values ranking map. 

The ranking based on the increase of the STI ranking highly depends on the increase of 

SCS–CN values (Figure 6b). The idea is the ranking of STI depends on the increase of SCS–

CN values rather than the increase of STI. Thus, correlation coefficient between STI values 

and ranking of STI was 0.28. First, SCS–CN values were increased from 58 to 99. Then The 

STI were sorted from smallest to largest. The lower SCS–CN values led to the lower ranking 

of STI. In the third ranking approach (Figure 7), STI ranking was based on each SCS–CN 

values ranking. First, SCS–CN values were arranged from smallest to largest. Second, in each 
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SCS–CN value, STI were arranged from 1 to largest. The correlation coefficient was 0.66 

because the ranking depended on the increase of both SCS–CN values and STI values. In this 

case, ranking depend on STI values rather than SCS–CN values.  

The Getis–Ord Gi* statistic computed a z–score in each feature in the dataset. For 

statistically significant positive z–scores, the larger the z–score is, the more intense the 

clustering of high values, named hot–spot. For statistically significant negative z–scores, the 

smaller the z–score is, the more intense the clustering of low values, named cold–spots. From 

three different ranking approaches, three different hot spot maps were generated, including a 

hot spot map of STI ranking, a hot spot map of STI based on SCS–CN values ranking, and a 

hot spot map of STI ranking based on STI in each SCS–CN values. Table 3 and figure 8 

analyzed the distribution of hot spots and cold spots of the third ranking approach, in which 

STI ranking was arranged in each CN values, had the nearest distribution to the distribution 

of inundated areas in each LULC types. 

Table 3. Total number of hotspots and cold spots in the third approach ranking map. 

Hot spots and Cold 

spots in comparison 

with flooding map 

areas 

LULC types 

  

Number of 

Cold spots 

Number of 

Hot spots 

Total cold spots 

and hot spots in 

each LULC types 

–3 –2 –1 1 2 3  

Inundated Pasture 

Corn           7 7 

Deciduous Forest 51 38 19 2     110 

Developed/Open Space   3   2 4   9 

Grass/Pasture 31 31 28 89 72 9 260 

Open Water       1 6 9 16 

Other Hay/Non–Alfalfa 52 37 4       93 

Soybeans       1 2 2 5 

Shrubland 3 1   1 1   6 

Total cold spots and hot spots of inundated   pasture 

in all LULC types 137 110 51 96 85 27 506 

Inundated   cultivation 

Corn         2 30 32 

Deciduous Forest 4 2 1   1   8 

Developed/Open Space         2   2 

Grass/Pasture   1   2 7 3 13 

Open Water           1 1 

Other Hay/Non –Alfalfa 17 5 1       23 

Soybeans         1 8 9 

Total cold spots and hot spots of inundated   

cultivation in all LULC types 21 8 2 2 12 34 88 

Total cold spots and hot spots of inundated areas in 

all LULC types 158 118 53 98 97 61 594 

Figure 8 illustrated the comparison between observed inundated areas and hot spot and 

cold spot distribution from the third approach ranking map. In table 3, total number of cold 

spots and hot spots in corn LULC areas in inundated cultivation and inundated pasture was 

39 points, while the number in the observed inundated map was 40 points in corn LULC type 

(Figure 8). Generally, the number of hot spots and cold spots in the other LULC types 

declined in comparison to observed inundated areas. However, in three approaches of the 

ranking maps, the third ranking approach turned in the best result in comparison with 

observed inundated data. 

Table 3 emerged distribution of hot spots and cold spots in each LULC type and 

compared to the distribution of inundated points in observed inundated areas. Accordingly, 

distribution in the hot spots map and inundated areas distribution in observed inundated areas 

had a similar tendency. The number of hot spots and cold spots decreased from corn to 

soybean. The highest number of hot spots and cold spots were in grass/pasture in both 
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distributions. However, the number of points were neither hot spots nor cold spots, which 

turned in 0 value from Getis–Ord Gi* spatial statistics, and were not analyzed in this 

description. Figure 9 illustrated the distribution of hot spots and cold spots of inundated 

cultivation added in google map of Callahan creek basin. 

Figure 8. Comparison between observed inundated areas and hot spot and cold spot distribution from the 

third approach ranking map. 



VN J. Hydrometeorol. 2022, 11, 43-56; doi:10.36335/VNJHM.2022(11).43-56 54 

 

Figure 9. Distribution of hot spots and cold spots of inundated cultivation on google earth map. 

4. Conclusions 

There was a statistical significance of the greater STI in inundated cultivation than STI 

in cultivation areas. However, STI values were not significant in STI comparisons of pasture 

areas. This result requires further observation to analyze the complexity of hydrology in the 

study areas. In other words, saturated excess mechanism is insufficient to explain runoff 

generation in pasture areas in this watershed. Therefore, the combination between STI and 

SCS–CN values demonstrated by the statistical significance of inundated pasture STI refined 

the explanation of runoff generation mechanisms. At some SCS–CN value, STI in inundated 

pasture is statistically higher than those of drained pasture. Thus, strongly recommend that 

STI and SCS–CN values should be combined to produce a ranking map of high runoff 

potential areas. However, the results need to be validated by soil moisture monitoring or by 

field studies. 
Hot spots and cold spots of runoff generation can emerge either within inundated areas 

or out of inundated areas. This challenge demands an appropriate scale analysis and hot spot 

generation mechanism since spatial and temporal resolutions of input data highly affect the 

hot spots of runoff generations. The distributions of hot spot and cold spots varied in each 

LULC type. This fluctuation requires high accuracy of land use land cover data as well as 

distribution of inundated areas. Ranking maps can be highly uncertain in many different 

runoff generation mechanisms. Therefore, it is necessary to be validated based on field 

research. 
The saturated hydraulic conductivity values should be as precise as possible so that the 

values can represent the variation of spatial and temporal scale to emerge the hot spots and 

cold spots. Wilcoxon rank sum test highly depends on the rank sum value of observed data, 

and thus in this study, the quality of LULC data and observed inundated map significantly 

influences the results. 

Callahan Creek  
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Abstract: This study applicates the multi–physical method in ensemble Kalman filter 

determining error of WRF models to forecast the track and intensity of storm Damrey in 

2017. The study run three experiments with assimilation of satellite data to forecast 

Damrey in 2017 at the beginning 00 UTC and 12 UTC November 1st and 2nd: (1) 21 

ensemble members which are combinated from 11 physics options, no increase in error 

correlation (MP); (2) Using single set of physical model, 21 ensemble members, inflation 

factor λ = 6.5 (MI); (3) Using single set of physical model, 21 ensemble members without 

increase in error correlation (PF). Statistical results of track errors in MP test at the 24, 48, 

72–hour is 12–32% reduction in compared with tests MI and PF. For storm intensity, 

absolute error of Pmin in the MP test at 24 and 72–hour is decreased from 30–47% in 

compared to the other two tests. And the absolute error of Vmax in the MP test at all 

forecasting terms is 13–26% reduction in compared with tests MI and PF. Thus, the multi–

physical ensemble Kalman filter can forecast the track and intensity of storms affecting 

Vietnam. 

Keywords: Ensemble forecasting; Error model; Typhoon; The Kalman filter. 

____________________________________________________________________ 

1. Introduction 

Basically, data assimilation is a process which the observed data and a background 

guess field are statistically combined to obtain the best possible initial conditions for the 

numerical model [1–2]. The goal of assimilation is to find the best possible analysis field 

for the model input. However, this work depends heavily on the quality of the observed 

data (related to the error of the observed data) and the quality of the model’s background 

guess data (related to the model’s intrinsic error). The error related to the monitoring data 

belongs to the problem of quality control of professional monitoring; while the background 

field error is related to the model’s internal errors – errors caused mainly by physical 

processes that are not fully understood [2–4]. 

Currently, the model error handling techniques in modern data assimilation algorithms 

include multiplicative inflation techniques [5], additive increasing techniques [6], or 
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systematic error correction method [7–8], multiple physics technique [9]. The multiple 

physics technique is the method of using different combinations of physical 

parameterization diagrams in the WRF model to calculate the parameters related to the 

error of the model in the ensemble Kalman filter [9]. This method is based on the 

assumption that the source of the model error is mainly due to the incomplete 

representation of physical processes [2–3]. The multiple physics has been applied in some 

previous studies [3, 9–11], and show significant improvements in track and intensity storm 

prediction results compared with other methods, such as the multiplicative inflation [12] 

and compared with the case where the model error is zero [3, 9–11]. Accordingly, in the 

study [9], it was shown that the multiplicative inflation factor 6.5 is the best compared to 

the multiplicative inflation factor that varies from 1.0 to 6.5, and the multiple physics 

technique is good choice for short–term forecasting problem, in addition, the study also 

shows that the optimal number of combinations in combination prediction ranges from 21–

24 components which are different combinations of physical parameterization schemes in 

the WRF model. Therefore, in this study, we will use the multiplicative inflation technique 

and consider the model to be perfect to compare with the multiple physics’ technique, and 

the number of ensemble components is 21 components for a forecasting session [9]. 

In addition, storm Damrey in 2017 was a strong storm that directly hit Ninh Hoa–

Khanh Hoa At 6:30 am on 4 November 2017 with wind strength increased by 1 level to 

level 13, level 15, 16 [13]. At 10 o’clock on the same day, the center of the storm was on 

the mainland of Dak Lak–Lam Dong, the wind strength near the center of the storm 

decreased to level 10–11, level 13. After that, the storm weakened into a tropical 

depression. By noon on November 5, the center of the tropical depression in the southern 

region of Cambodia, the wind dropped below 40 km/h. By November 8, at least 106 people 

had been killed in Vietnam by the storm, with 197 others injured and 25 missing. It is 

reported that more than 116,000 homes were destroyed after flooded. The United Nations 

Children’s Fund (UNICEF) estimates that at least four million people have been directly 

impacted by the storm and need support. Nha Trang beach resort was one of the hardest hit 

areas, 30,000 residents and tourists had to evacuate the area. A number of previous studies 

used storm Damrey as in the initial study of vortex chemistry by Nguyen Binh Phong and 

Associates 2020 to predict the intensity of storm Damrey during the landfall stage [14]. 

Research results show that storm intensity with vortex initial is improved more clearly in 

the absence of vortex initialization. Another study related to the forecast of the storm 

Damrey’s trajectory by the method of correcting the forecast of the storm’s trajectory from 

the product of the combined forecasting system through the selection of the optimal 

composite component of the author Tran Quang Nang and Tran Tan Tien 2020 [15]. The 

results show that the correction method can only improve the error of trajectory prediction 

in short–term forecasting terms. Another study by Kulaya Keawsang–in and colleagues 

2021 examines the sensitivity of different physical schemes to simulate Typhoon Damrey. 

The results show that the Belts–Millers–Janjic convection diagram and the WSM6 

microphysics diagrams are suitable in the simulation of storm Damrey [16]. Therefore, in 

this study, we apply multiphysics technique in combinatorial Kalman filter to determine the 

error of WRF model predicting the trajectory and intensity of storm Damrey 2017. 

2. Methods and data 

2.1. Ensemble Kalman Filter algorithm 

The idea of the LETKF algorithm is to use the background ensemble matrix as a 

transformation operator from the model space spanned by the grid points within a selected 

local patch to the ensemble space spanned by the ensemble members, and perform the 

analysis in this ensemble space at each grid point. For a quick summary of the LETKF 
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algorithm, assume that a background ensemble b(i){ i 1, 2..., k}=x  are given, where k is the 

number of ensemble members (assuming that we are doing analysis at one instant of time, 

so no time index is written explicitly). Following [17], an ensemble means b
x  and an 

ensemble perturbation matrix Xb are defined respectively as: 

   
=

=
k

i

ibb

k 1

)(1
xx ; bibb

xxX −= )(     (1) 

Let wXxx
bb += , where w is a local vector in the ensemble space, the local cost 

function to be minimized in the ensemble space is given by: 

][}])([)({)1()( 1
wXxwXXXXIww

bbbTbbTbT JkJ ++−−= −


  (2) 

where ][ wXx
bbJ +  is the cost function in the model space. If one defines the null 

space of Xb as N = {v | Xbv = 0}, then it is easy to see that the cost function )(wJ


is 

composed of two parts: one containing the component of w in N (the first term in Eq. 2), 

and the second depending on the component of w that is orthogonal to N. By requiring that 

the mean analysis state 
a

w  is orthogonal to N such that the cost function )(wJ


is 

minimized, the mean analysis state and its corresponding analysis error covariance matrix 

in the ensemble space can be found as: 

   )]([)( 01 bTbaa H xyRYPw −= −


    (3) 
11 ])()1[( −−+−= bTba k YRYIP


    (4) 

where )( )( bibb H xxY −  is the ensemble matrix of background perturbations valid at 

the observation locations, and R is the observational error covariance matrix. By noting that 

the analysis error covariance matrix a
P  in the model space and a

P


 in the ensemble space 

have a simple connection of 
Tbaba )(XPXP


= , the analysis ensemble perturbation matrix 

a
X can be chosen as follows: 

   
2/1])1[( aba k PXX


−=     (5) 

The analysis ensemble xa is finally obtained as:     

   }])1[({ 2/1)( aabbia k PwXxx


−++=     (6) 

Detailed handling of more general nonlinear and synchronous observations in LETKF 

can be found in [17]. It should be mentioned that the above formation is only valid in the 

absence of model errors. To take into account the model errors, [17] suggested that a 

multiplicative factor should be introduced in Eq. (4) (specifically, the first factor on the rhs 

bracket in Eq. 4). Although one could also use the additive inflation, this study focuses only 

on the multiplicative inflation for the ease of implementation and comparison.  

2.2. Models and Study area 

Using WRF model version V3.9.1 with 31 levels (Sigma) in the vertical with the highest-

pressure level (the upper boundary of the model) is 10hPa [18]. The WRF model is selected 

with two nested computational domains using the Mercator projection. The mesh area 

designed for the simulation test of Damrey storm is a nested grid consisting of 2 regions with 

horizontal resolutions of 36 km and 12 km respectively, grid domain 1 consists of 151×151 

grid points and grid domain 2 consists of 151×151 grid points with the domain center. 

immobility 11.2°N & 112.3°E (Figure 2). 
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Figure 1. The study area. 

2.2. Experiment descriptions 

In this study, the authors tested the forecast for typhoon Damrey 2017 with a term of 3 

days 2017 at the beginning 00 UTC and 12 UTC November 1st and 2nd with experiments 

are listed in table 1. All the above tests are assimilated satellite wind data by the ensemble 

Kalman filter. 

Table 1. List of experiments with the WRF–LETKF configuration. 

Experiments Description Boundary Condition 

MP The Combination of 11 options physical 

model, 21 ensemble members, no increase in 

error correlation 

To ensure that each member has its 

own lateral boundary condition 

consistent with its updated nalysis, 

the WRFDA boundary routine is 

used to generate boundaries for each 

ensemble member after 

the ensemble analysis step is 

finished for every cycle. 

MI Using a set of physical model, 21 ensemble 

members, inflation factor λ = 6.5 

PF Using a set of physical model, 21 ensemble 

members without increase in error correlation 

In the first experiment (MP), 21 sets of physical models (Table 3) consisted of the set 

of combinatorial components of the parameterization schemes in Table 2. In the second 

experiment (MI), one the set of specific physical models in the WRF model include (a) the 

WSM3 microphysics diagram, (b) the radiation rapid transmission scheme (RRTM) for 

both long and short-wave radiation, and (c) BMJ convective parameterization scheme 

(component 11) is applied to all combinatorial components with a multiplier = 6.5 added in 

the variable error correlation matrix change Pa in expression (4). However, this coefficient 

λ does not change in all cycles of the experiment so that the effectiveness of the MI method 

in handling model error can be compared with that of the MP method. In the third 

experiment (PF), we consider the model to be perfect with the background error unchanged 

over all the running cycles of the experiment. Similar to the multiplication method, this 
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experiment uses the same set of physical models as in the MI experiment so that the 

effectiveness of the method in handling model errors can be compared with the MP and MI 

tests. 
 

Table 2. Options table of physical parameterization schemes in WRF model [19]. 

Schemes Symbol Options 

Longwave Radiation ra_lw_physics  1. RRTM scheme 

Shortwave Radiation ra_sw_physics 
1. Dudhia scheme 

2. Goddard shortwave 

Microphysics mp_physics 

1. Kessler scheme 

2. Lin et al. scheme 

3. WSM 3–class simple ice scheme 

4. WSM 5–class scheme 

5. Ferrier (new Eta) microphysics 

6. WSM 6–class graupel scheme 

Cumulus 

Parameterization 
cu_physics 

1. Kain–Fritsh scheme 

2. Betts–Miller–Janjic scheme 

Table 3. Encryption of multi–physical ensembles from multiple physics options in WRF model [19]. 

Complex Ra_lw_ physics Ra_sw_ physics mp_ physics cu_physics 

001 1 2 1 1 

002 1 1 1 2 

003 1 2 1 2 

004 1 1 2 1 

005 1 2 2 1 

006 1 1 2 2 

007 1 2 2 2 

008 1 1 3 1 

009 1 2 3 1 

010 1 1 3 2 

011 1 2 3 2 

012 1 1 4 1 

013 1 2 4 1 

014 1 1 4 2 

015 1 2 4 2 

016 1 1 5 1 

017 1 2 5 1 

018 1 1 5 2 

019 1 2 5 2 

020 1 1 6 1 

021 1 2 6 1 

2.3. Data 

The initial and boundary conditions used NCEP/NCAR (NCEP–The National Center 

for Environmental Prediction/NCAR–The National Center for Atmospheric Research) GFS 

forecast data with a horizontal resolution of 0.5×0.5 degrees and grib2 format. GFS data 

were obtained from the website: https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/global-forcast-system-gfs. The best track data of storm position and intensity are 

collected from the website: https://www.metoc.navy.mil/jtwc/jtwc.html?western-pacific. 

Wind monitoring data from satellites is a particularly important data source for 

forecasting models running around the world with global coverage and data collection time 

within 3–6 hours. depending on the characteristics of each satellite. Satellite wind data 

allows to know the dynamic state of the atmosphere, contributing to the information of the 

initial field of the forecast model by data assimilation. Currently, satellite wind data are 
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preprocessed by the University of Wisconsin satellite atmospheric motion vector CIMSS–

AMV (Cooperative Institute for Meteorological Satellite Studies – University of Wisconsin 

satellite atmospheric motion vector CIMSS–AMV) in the same time period. selected. 

Several studies with CIMSS–AMV data have shown that this data can help improve the 

predictive quality of various medium–sized systems. The advantage of the CIMSS–AMV 

data is that the error has been tested for high quality and is determined by a recursive 

filtering algorithm. Each metric is checked for the best fit with the surrounding data using 

quality index techniques. Most of the CIMSS–AMV data is distributed in different regions 

and is currently stored in a variety of formats including ASCII and/or BUFR. In this study, 

satellite wind data were collected over the Indian, Northwest Pacific region (Figure 2) and 

downloaded from the website http://tropic.ssec.wisc.edu in ASCII format. 

 

Figure 2. Area is covered by satellite wind data in this study (source: http://tropic.ssec.wisc.edu). 

2.4. Evaluation methods 

2.4.1. Absolute mean method 

According to [20], MAE error is used to evaluate the predictions of continuous 

atmospheric variables. Therefore, MAE is applied as an index to evaluate the error of storm 

intensity (minimum sea level pressure at the center – PMIN and maximum wind speed near 

the center of VMAX). With MAE–mean absolute error is calculated by the formula: 

                MAE = 
1

𝑁
∑ |𝐹𝑖 −𝑂𝑖|
𝑁
𝑖=1                     (7) 

where MAE is the mean absolute error; Fi is the predicted value; Oi is the observed 

value; and N is the length of the data series. 

2.4.1. Storm center distance method 

Track error calculated by formula (8). 

PE = Re ∗ arccos⁡[sin(α1) ∗ sin(α2) + cos(α1) ∗ cos⁡(α2) ∗ cos⁡(β1 − β2)]   (8) 

where Re is the radius of the earth (6378.16 km); α1, α2 is the latitude of the actual of 

the storm and the center of the storm predicted by the model (in radians); β1, β2 is the 

longitude of the actual center of the storm and the predicted center of the storm (in radians). 

The distance mean error is calculated as follows: 
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MPEj =
∑ PEi,j
n
i=1

n
        (9) 

where PE is the distance error of each forecasting case; n is the number of test cases; j 

is the forecast term. 

3. Results and discursion  

3.1. Stream simulation 

Basically, when large–scale circulations change and control the storm's active area, it 

will directly affect the direction of the storm's movement. In the case of cyclone Damrey, 

large–scale circulation dominated the storm's area of activity, including the northwest 

Pacific subtropical high and cold high at north of the storm. For the purpose of 

investigating the applicability of multiphysics techniques in determining the model error in 

ensemble Kalman filter to prediction storm trajectory, the study compares the stream field 

in the MP, MI and PF tests in levels 850, 700, and 500 hPa at 12h00 UTC on 3rd November 

2017 is the time when the storm begins to make landfall in the forecast session that begins 

at 12h00 UTC on 1st November 2017 (Figure 3). 

    

    

    
Synop 

[https://www.tmd.go.th/en/weather_

map.php] 

MP MI PF 

 

Figure 3. The stream map of 850 hPa (top), 700 hPa (middle) and 500 (bottom) hPa levels. 

At 850 hPa and 700 hPa, the MP test simulates a cold high that mixes southward and 

extends to the east more than the cold high which is simulated in the MI and PF tests. In 

particular, at 700 hPa and north of the storm there is a fairly barometric saddle in the synop 

map, and this barometric saddle is also simulated in the MP test, while the MI and PF tests 
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don't simulate this barometric saddle (Figure 3). At 500 hPa, the MP test simulates the 

northwest Pacific subtropical high more westward than the MI and PF trials, and has a similar 

morphology to the synop map (Figure 3). The simulation results show that the direction of the 

storm in the MP test is closer to the real trajectory than the other two tests [11]. 

Thus, the multiphysics technique seems to have some impact in the flowline simulation 

at the levels of 850, 700 and 500 hPa. This result is a consequence of previous work that 

demonstrated that the volumetric least squares error of the multiphysics technique is 

smaller than the volumetric least squares error of the multiplicative inflation technique. 

Meaning predicted error of U, V and T in the MP test improved markedly compared with 

the MI test [9]. As a result, the forecast results of the trajectory and intensity of storm 

Damrey in the MP test are also improved relative to the MI and PF tests. In the next 

section, the paper will examine the ability of the tests to predict the trajectory and intensity 

of storms. 

3.2. Forecasting intensity and track 

3.2.1. Track storm 

Figure 4 shows that the true trajectory of Typhoon Damrey is moving to the west (Figure 

4) and made landfall around 12h00 UTC on 3rd November 2017. Meanwhile, the ensemble 

components in the MP, MI and PF tests all predict the trajectory of storm Damrey to move to 

the northwest. At 12h00 UTC on 4th November 2017, the storm moved on the sea in MP, MI 

and PF tests (Figures 4a–4c). In addition, a few ensemble components of the MP test 

predicted the location of the storm Damrey's landfall, but it is quite far from the actual 

location. On the other hand, the dispersion of composite components in the MP test is wider 

than that of the composite components in the MI and PF tests. This result is similar to the 

results of the previous study when concluding that the composite dispersion in MP was wider 

than the composite dispersion in the MI test [9, 11]. 

Figure 4d is the ensemble mean trajectory in the MP, MI and PF tests, the observed 

trajectory in black and the trajectory of the GFS data (green). From 00–hour to 30–hour 

forecast period, it shows that the storm trajectory is not much different between the 3 tests 

MP, MI and PF, after the 30–hour forecast period to 72 hours, the forecast trajectory of the 

tests is in the north of the true trajectory, where the predicted trajectory of the MP test is 

closer to the true orbit than the MI and PF tests. And the Damrey orbit in the GFS data is 

located south of the true trajectory. 

The forecast results of storm Damrey's trajectory in the tests are consistent with the 

results of the stream simulations in all three tests (section 3.1). Specifically at 12h00 UTC on 

3 November 2017 At 850 hPa and 700 hPa, the MP test simulates a cold high which moves 

down to the south and extends to the east more than with cold high simulated in the MI and 

PF tests. So the cold high in the MP test limited the direction of the storm's movement to the 

north. In addition, at 500 hPa, the MP test also simulated the northwest Pacific subtropical 

high developing to the west, thereby also limiting the northward movement of the storm 

(figure 4d). However, the speed of storm movement in all 3 trials was slower than observed 

and GFS data. And to quantify the accuracy of each trial’s hurricane trajectory prediction, the 

study calculated the trajectory prediction error of the trials. 

From the graph showing the trajectory prediction error of the MP, MI and PF tests 

together with the trajectory prediction error of the GFS data (Figure 5), it shows that the 

trajectory prediction error of the MP test is lower than the forecast error of the storm 

trajectory of the MI and PF tests at most forecasting periods. Meanwhile, the forecast error 

of storm trajectory in the MP test did not improve much compared with the track forecast 

error of the GFS data. This result is also clearly seen in the statistics of the orbital forecast 

error of the 3 forecasting sessions (Figure 6). 



VN J. Hydrometeorol. 2022, 11, 57-71; doi:10.36335/VNJHM.2022(11).57-71                           65 

To evaluate the effectiveness of the MP test in predicting the trajectory, we calculated 

the relative trajectory prediction error between the MI and MP tests, and between the PF 

and MP tests (table 4). The relative trajectory prediction error results show that the orbital 

error in the MP test improves from 9% to 32% compared to the trajectory prediction error 

in the MI test, and improves from 4% to 30% compared to the trajectory prediction error in 

the PF test at most forecasting terms. This result may be due to the multiphysics technique 

(determining the error of the model due to the incomplete understanding of physical 

processes [4, 9] has partly corrected the error of the model. So that the received background 

field has a significantly reduced error, and leads to a more accurate analysis field for the 

input of the model than the multiplicative inflation technique and considers the model 

perfect. 

 
Figure 4. The predicted trajectory of Hurricane Damrey in the MP test (a), the MI test (b) and the 

PF test (c); observed (orange), composite components are thin lines; Figure d is the observed 

trajectory, the combined average trajectory of the test MP, MI, PF and GFS data. The forecast start 

time is 12 o’clock on November 1, 2017. 

 
Figure 5. The ensemble means track errors in the MP, MI and PF test. With the forecast session 

starting at 12h00 UTC on 1st November 2017. 
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Figure 6. Average track error of 3 forecasting sessions (00 UTC on 1 st November 2017, 12UTC 

on 1st November 2017 and 00 UTC on 2 nd November 2017) MP, MI, PF test and GFS data. 

Table 4. Relative error of MI and PF relative to MP in trajectory simulation, Pmin and Vmax. 

Periods 
Track (km) Pmin (hPa) Vmax (ms–1) 

MI–MP PF–MP MI–MP PF–MP MI–MP PF–MP 

0 0.00 0.00 0.00 0.00 0.00 0.00 

6 –0.23 0.05 0.08 0.03 –0.03 0.14 

12 0.08 0.04 0.08 0.10 –0.03 0.08 

18 0.09 0.12 –0.13 –0.19 –0.06 –0.13 

24 0.18 0.13 0.31 0.27 0.13 0.18 

30 0.32 0.28 –0.30 –0.32 0.49 0.49 

36 0.32 0.28 –0.16 –0.17 0.36 0.35 

42 0.32 0.28 0.68 0.62 0.58 0.52 

48 0.32 0.28 –1.56 –1.32 0.27 0.18 

54 0.34 0.30 –0.05 –0.05 0.07 0.08 

60 0.31 0.27 0.25 0.18 0.30 0.29 

66 0.31 0.26 0.38 0.35 0.24 0.19 

72 0.26 0.21 0.47 0.43 0.26 0.21 

3.2.2. Damrey storm intensity 

Storm intensity is usually expressed through minimum pressure (Pmin) and maximum 

wind speed (Vmax). The Pmin and Vmax values used in this section are the mean of the 21 

ensemble members in each trial. 

a) The minimum pressure 

The observed Pmin data in Figure 7 shows that the storm gradually became stronger 

from 12h00 UTC on 1st November 2017 and the strongest storm at 12h00 UTC on 3rd 

November 2017 (Figure 7) – expressed through the value of Pmin down to the lowest. After 

that, the Pmin value increases gradually, meaning the storm is getting weaker. The MP, MI 

and PF tests all predict the Pmin process which has a decreasing trend similar to the 

observed Pmin value. However, after 12h00 UTC on 3rd November 2017, these tests did not 

predict the changing trend of the Pmin process as observed (Figure 7). Particularly, the Pmin 

of GFS data has a variable similar to the observed Pmin, but value Pmin is much larger than 

the observed Pmin value, or in other words, the storm intensity in the GFS data is weaker 

than in reality. At 12h00 on 3rd November 2017 is also the time when the storm makes 

landfall (according to monitoring data), but in the tests, Pmin decreased little or not, so the 

storm still existed at sea. This result is statistically consistent, when the storm makes 
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landfall, the intensity of the storm decreases. Meaning the Pmin value increases more than 

on the sea surface. 
The Pmin absolute error results will indicate the effectiveness of each trial in predicting 

Pmin. Figure 8 shows that the Pmin absolute error in the MP test did not improve much 

compared to the MI and PF tests at the 60–hour advance term, while at the 66–hour and 72–

hour forecast period, the MP absolute error improved significantly. Statistically, all 3 

forecasting sessions showed that Pmin prediction results in the MP test were better than the 

MI and PF tests at most of the forecasting term (Figure 9). 

In addition, similar to the evaluation of the predictability of the Damrey storm 

trajectory of the multiphysics technique in determining the error of the model in the 

ensemble Kalman filter, we also calculate the relative error Pmin between the tests. The 

results in Table 4 show that, at the 24–hour forecast period and the 2–day prediction term, 

the MP test improves the Pmin error by 18% to 47% compared with the MI and PF tests. 

This result may be due to the effect of the multiphysics technique in forecasting 

meteorological variables (U, V and T) which is significantly improved compared with the 

techniques in the MI test [9] and PF test. On the other hand, the Pmin statistical error results 

also show that the MP test significantly improves the Pmin error compared with the GFS 

data (Figure 9) at most of the forecasting term. However, at the time when the storm was 

about to make landfall, the Pmin error in the MP test did not improve compared to the 

initialization vortex method [14]. In the next section, the article analyzes the predictive 

ability of Vmax of multiphysics techniques. 

 

Figure 7. The mean Pmin process variable in the trials. With the forecast start time at 12h00 UTC on 

1st November 2017. 

 

Figure 8. Pmin Absolute error (hPa) in the MP, MI, PF test and GFS data. Forecast at 12h00 UTC 

on 1st November 2017. 
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Figure 9. Average absolute error Pmin in forecast sessions (00 UTC on 11/01/2017, 12 hours UTC 

on 11/01/2017, 00 UTC on 11/2/2017) in MP, MI, PF tests and GFS data. 

b) Maximum wind speed 

The maximum wind speed (Vmax) is the second factor representing the intensity of any 

storm. The change in Vmax during the storm’s activity also indicates that the storm is 

weakening or strengthening. Therefore, the Vmax variable is a visual image describing the 

strength or weakening of the storm. Figure 10 is the Vmax variable of storm Damrey with 

the forecast time at 12h00 UTC on 1st November 2017. Similar to the Pmin variable, the 

observed Vmax data shows that the storm is getting stronger from 12h00 UTC on 1st 

November 2017 and the strongest at 12h00 on 3rd November 2017 – this is shown by the 

value of Vmax reaching the minimum at this time. After that, the storm gradually weakened 

when it made landfall, due to the influence of surface friction (Figure 8). Meanwhile, the 

MP, MI and PF tests all predict that the Vmax process tends to increase similarly to the 

observed Vmax value from 1200h UTC on 1st November 2017 to 12h00 UTC on 3rd 

November 2017. After 12h00 on 3rd November 2017, the variable Vmax in the tests is 

different from the observed Vmax variable (Figure 10). Particularly, the Vmax variable of 

GFS has a variable similar to the observed Vmax, but Vmax value is much smaller than the 

observed Vmax value or in other words, the storm intensity in the GFS data is weaker than 

in reality. This is consistent with previous studies that simulate the Vmax magnitude of 

GFS data biased lower than reality. In addition, at 12h00 on 3rd November 2017 is also the 

time when the storm makes landfall (according to observational data – figure 10, figure 4 – 

trajectory), but in the tests, Vmax decreased slightly, so the storm still exists at sea. This 

result is statistically consistent, when the storm makes landfall, the intensity of the storm 

decreases sharply – the Vmax value decreases more than on the sea surface. The results of 

Vmax absolute error show the effectiveness of each test in predicting Vmax. Figure 11 shows 

that the Vmax absolute error of the MP test is significantly improved compared with the MI 

and PF tests at most of the forecasting terms. Statistically, all 3 forecasting sessions showed 

that Vmax prediction results in MP test were better than MI and PF tests at most of the 

forecast periods except for the 24 hours period (Figure 11). 

In addition, we calculate the Vmax relative error betweenthe tests. The results shown in 

Table 4 show that the Vmax error value in the MP test is improved by 6% to 58% 

compared tothe Vmax error in the MI and PF test. This result may be due to the effect ofthe 

multiphysics technique in forecasting meteorological variables (U, V and T) which is 

significantly improved compared with the techniques in the MI test [9] and PF test. In 

addition, the statistical Vmax error also showsthat the MP test significantly improves the 

Vmax error compared with the GFSdata (Figure 12). However, at the time when the storm 

was about to makelandfall, the Vmax error in the MP test did not improve compared to 

theinitialization method [14]. Thus, for intensity forecasting of Damrey storm, multiphysics 
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techniques show certain advantages – forecasting storm intensityis more effective than 

other techniques. 

 

Figure 10. Variable Vmax means in the trials. With forecast start time at 12h00 UTC on 1st 

November 2017. 

 

Figure 11. Absolute error Vmax (m/s) in the MP, MI, PF and GFS tests. Forecast at 12h00 UTC on 

1st November 2017. 

 

Figure 12. Average absolute error Vmax in forecasting sessions (00 UTC on 11/01/2017, 12 hours 

UTC on 11/01/2017, 00 UTC on 11/2/2017) in MP, MI tests, PF and GFS. 
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4. Conclusion 

In this study, we applied multi–body and multiplier technique and considered the model 

to be perfect to perform 3 sessions of forecasting the trajectory and intensity of Typhoon 

Damrey 2017 with 3–day forecast period with input field. is the analysis data which is 

generated from the Kalman filter combination assimilation of wind data observed from 

satellites. The results of the comparative analysis and comparison between the above methods 

show that: 

Regarding the trajectory prediction, the MP test (multiphysics technique) showed an 

improved trajectory error of 9% to 32% in compared with the trajectory prediction error in 

the MI test, and an improvement of 4% up to 30% of the orbital prediction error in the PF test 

at most forecasting terms. These results are the consequence of correcting the error of the 

model because the object processes are not fully represented by the multibody technique. 

With a specific case at the 12h00 session on 1st November 2017, the multi–physical 

techniques (MP test) simulation results of the general atmospheric circulation – Cold 

continental high pressure and subtropical high pressure. The north–west Pacific temperature 

is quite similar to the synaptic topology, so that the forecasted storm trajectory is closer to the 

true trajectory than the other techniques (MI and PF). However, at the stage when the storm 

was about to make landfall, the multiphysics technique did not improve the orbital error 

compared with the GFS data. This may be due to the storm’s interaction with land 

(topography), so the model error at this point does not seem to be simply due to the physical 

processes in the model not being fully represented enough. Therefore, the study proposes for 

the next research direction of applying multiphysics technique in combinational Kalman filter 

to determine model error for simple cases of storms moving at sea and for hurricanes. landed 

on land. From there, there is a plan to overcome the error of the trajectory for the case of 

storms that are about to land on the mainland. 

In predicting the intensity (Pmin and Vmax), the multiphysics technique also shows the 

certain advantages over the other two techniques at each forecasting term. Specifically, for 

Pmin, at the 24-hour forecast period and the 2 days larger forecast period, the MP test 

improved 18% to 47% of the Pmin error in compared with the MI and PF tests. For Vmax, the 

Vmax error value in the MP test improved by 6% to 58% in compared with the Vmax error in 

the MI and PF test. These results may be due to the effect of the multiphysics technique in 

predicting meteorological variables (U, V and T) which is significantly improved compared 

with the multiplier techniques in the MI test [9] and PF. In compared with using GFS data, 

the multiphysics technique significantly improved the forecast error of storm intensity (Figure 

14 and Figure 15). Especially when the storm was about to make landfall, the strongest storm 

was at 12h00 UTC on 3rd November 2017, the MP test predicted the storm’s value as well as 

the strengthening trend. In terms of errors, Pmin and Vmax are improved compared with GFS 

data, MI and PF tests, but cannot be improved compared to Pmin and Vmax prediction results in 

the initial study of vortex chemistry [14]. Therefore, the research direction that applies both 

the multiphysics method and the initial application of vortex chemistry to predict the intensity 

of storms affecting Vietnam is the next research direction of the authors’ group. 
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Abstract: This study aims to evaluating characteristics of rainfall simulated by 

Non–Hydrostatic Regional Climate Model (NHRCM) over seven sub–regions of Vietnam 

during the 1981–2001 period. Features such as seasonal cycle of monthly average daily 

rainfall, maximum daily rainfall, and frequencies at different thresholds are compared with 

observations. Statistical evaluations of errors and correlation coefficient are also examined 

to see the differences between model results and observations. The results show that 

NHRCM captured well the seasonal cycle of the simulated monthly average daily rainfall, 

but magnitudes are underestimated in all sub–regions except South Central Vietnam (N1). 

Generally, underestimations of the simulated daily rainfall are observed in almost all 

months and sub–regions, higher differences are found in rainy months and the most 

underestimation of rainfall is observed in South Vietnam (N3). Correlation coefficients over 

0.6 are found in North West Vietnam (B1) and South Vietnam (N3). Monthly absolute 

maxima of the observed daily rainfall are found in North Central (B4) in transition months 

when the model usually underestimated significantly. In addition, NHRCM tends to 

simulate cases with rainfall amounts below 16 mm/day or above 50 mm/day with higher 

frequencies compared with the observations. In contrast, frequencies detected by NHRCM 

seem to be lower than those of the observations for rainfall amount in 16 – 50 mm/day, 

especially in sub–regions N2 and N3. These results are supportive for applying the Regional 

Climate Model in simulating rainfall characteristics over Vietnam, especially for 

Non–Hydrostatic version. 

Keywords: NHRCM model; Rainfall; Vietnam. 

 

1. Introduction 

Southeast Asia including Vietnam is a monsoon region where extreme events frequently 

occur, especially associated with precipitation. Precipitation is an essential component of the 

earth’s climate system affecting the eco–system and socio–economy activities [1]. 

Numerical experiments of Regional Climate Models (RCM) have been implemented so far 

by many authors such as [2–7]. Along with the development of science and technology in 

recent years, super computers have been able to run much finer grid RCMs that help to well 

reproduce extreme events such as heavy rain and intense heat [8]. It is well known that 

precipitation simulations of RCMs are biased due to limited understanding of atmospheric 

physical processes or insufficient spatial resolution [9]. Therefore, a major important thing is 

that output of RCMs should be evaluated with historical observations [10]. There are several 

studies [8–13] investigated the skill of the Non–Hydrostatic Regional Climate Model 



VN J. Hydrometeorol. 2022, 11, 72-82; doi:10.36335/VNJHM.2022(11).72-82 73 

 

(NHRCM) of the Meteorological Research Institute (MRI) in simulating the present climate, 

including heavy precipitation as well as in producing climate projection over Japan and 

Southeast Asia. Five–year integration from 2001 to 2006 was carried out continuously in the 

study [8] to evaluate reproducibility of the present climate over Japan using the 

double–nesting NHRCM with the analysis data. The simulated results of the 4–km grid 

spacing NHRCM showed that the average annual precipitation was overestimated by only 

8% compared to the Automated Meteorological Data Acquisition System (AMeDAS) 

observations. NHRCM simulated reasonable frequency distribution of precipitation 

intensity, with a little higher value for the frequency of heavy precipitation than that observed 

by the AMeDAS [8]. A 20–year–integration of NHRCM of the present climate using an inner 

nested grid with a spacing of 5 km showed that the model performance fluctuated 

significantly among regions over Japan. In particular, the model tended to give 

underestimated precipitation from 20% to 40% along the coast of the Japan Sea and the 

Nansei Archipelago and overestimated precipitation by more than 40% at some inland 

locations when compared with observed amounts. However, the model well reproduced the 

spatial and temporal distributions of the annual mean temperature and precipitation [11]. The 

study of [12] evaluated the accuracy of four RCMs, including NHRCM, through daily 

precipitation indices during the period 1985–2004 over Japan at 20–km grid interval. The 

results indicated that for most indices, such as mean precipitation, number of wet days, mean 

amount per wet day, 90th percentile of daily precipitation, number of days with precipitation 

≥90th percentile of daily precipitation, are often produced well by NHRCM model. 

However, the accuracy varies depending on the indices, seasons and aspects. The study also 

highlighted that higher–resolution dynamical models derive a better representation of most 

daily precipitation indices than reanalysis data, especially in areas with complex terrain and 

land–sea distribution. The present climate over Southeast Asia, from 1989 to 2008, was 

simulated by NHRCM with 25–km resolution and 50 vertical levels [13]. It is shown that the 

model can capture well the topographic effect on rainfall, but the simulated values can be wet 

(dry) biases in the windward (leeward) side of mountains compared to APHRODITE. In 

terms of both seasonality and daily distribution of rainfall, the NHRCM model tends to 

underestimate the number of wet days during the respective wet season of the sub–regions 

and to overestimate daily rainfall intensity. There are many researches on RCM performance 

assessment such as RegCM, MM5, WRF… over Vietnam especially on examining rainfall 

simulation. The study of [14] used RegCM3 to analyze the simulations of surface 

temperature and precipitation over the Red River Delta of Vietnam. Model results are 

compared with observations at the 17 meteorological sites in Red River Delta during the 

1980–1999 baseline period. They conclude that temperature is underestimated systematically 

as well as precipitation has cold bias during summer and autumn while is well reproduced in 

winter and spring. Besides that, the ability simulations of the climate regional 

non–hydrostatic NHRCM and hydrostatic RegCM4.2 models from 1985–2007 showed in the 

study of [15]. It can be found that surface temperatures simulated by NHRCM have warm 

biases while vice versa of RegCM compared with observations. Rainfall simulations of 

NHRCM have a better agreement with observations than those of RegCM4.2, especially 

NHRCM can reproduce some heavy rainfall centers. In the study [16], clWRF model is used 

to simulate the rainfall amount in the period of (1981–2000). The results show that the model 

simulations are often overestimated comparing to observations especially in rainy season and 

in southern surface meteorological stations. The performance of simulation and projection of 

rainfall and tropical cyclone activity over Vietnam was investigated in [17]. The simulated 

results showed that climatic heavy rainfall centers are well captured in the seasonal cycle. 

However, the model overestimates rainfall in comparison with the APHRODITE data. In 

addition, NHRCM underestimates rainfall in North Vietnam but overestimates rainfall in 

South Vietnam in June–July–August compared to the rain gauge data. The model also 
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overestimates rainfall in September but underestimates in October–November in Central 

Vietnam. 

The purpose of this paper is to evaluate rainfall simulation of NHRCM over Vietnam as 

well as to analyze its characteristics in the present climate from 1981 to 2001. Main features 

including seasonal cycle of monthly average daily rainfall, maximum daily rainfall, and 

frequencies at different thresholds are compared directly with observations. The rest of this 

work is organized as follows. Section 2 will provide details of model experiment and data. 

Section 3 describes results and discussions. Concluding remarks are given in Section 4. 

2. Data and Methods  

2.1. Data 

In this study, daily rain gauge data observed at 127 selected meteorological stations, as 

shown in Figure 1, are used to estimate the seasonal march of the simulated rainfall in seven 

sub–regions of Vietnam during the 1981–2001 period. The ERA–Interim reanalysis 

(hereafter denoted as ERA) is a global atmospheric reanalysis dataset developed by the 

European Centre for Medium–Range Weather Forecasts (ECMWF), which covers from 

January 1989 onward and is continuously updated in near–real time [18]. In this study, the 

ERA data for precipitation and the wind field on the 850mb pressure level for the period 

1981–2001 are used to evaluate the performance of the NHRCM model in capturing the 

features of wind across a year. 

 

Figure 1. Colors indicate average annual precipitation (mm) over seven sub–regions of Vietnam 

during the 1981–2001 period. Circles show meteorological observation sites and lines display the 

boundaries of seven sub–regions. 

2.2. Methods 

The regional climate model NHRCM is the extended version of an operational 

Non–Hydrostatic Model (NHM) developed by the Meteorological Research Institute (MRI) 

and the Numerical Prediction Division of the Japan Meteorological Agency (NPD/JMA). 

The detail descriptions of NHM can be found in [19]. The Kain–Fritsch scheme [20] is used 

in this study for cumulus convective parameterization. The soil model is replaced by 
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MRI/JMA– Simple Biosphere model (MJ–SiB, [21]) and lateral boundary conditions are 

replaced by spectral nudging boundary conditions.  

Simulations have been done over a domain of (6.4° – 25.2°N; 98.4° – 112.5°E) as shown 

in Figure 2. The time steps for the model configured with 5–km horizontal resolution and 50 

vertical levels. Initial and boundary conditions for NHRCM are provided by a simulation 

performed by an atmospheric general circulation model with a 20–km horizontal grid spacing 

(AGCM20; [22]). Lateral boundary conditions are updated every 6 hours. The sea surface 

temperature is given by the Hadley Centre Sea surface temperature data set version 1 

(HadISST1) four times a day [23]. Time integration was implemented continuously from 

January 1981 to December 2000. For each year, the simulation began at 00 UTC 20 

November and ended 00 UTC 31 December. The first 42 days of the simulation were 

regarded as the model spin–up and discarded. 

 

Figure 2. Model domain and topography. 

3. Results and discussions 

Figure 3 shows the mean 850–hPa wind patterns in March–April–May (MAM), 

June–July–August (JJA), September–October–November (SON) and 

December–January–February (DJF) of NHRCM and ERA during 1981–2001. In general, the 

spatial and temporal variability of the prevailing 850–hPa winds are simulated well by 

NHRCM compared with ERA for the whole Vietnam region. However, the values of 

NHRCM are a little higher than those of ERA. During MAM, the mean 850–hPa winds are 

southwesterly over North and North Central Vietnam, while they are easterly and 

northeasterly over South Central and South Vietnam. In JJA, the prevailing 850–hPa winds 

are westerly almost all over Vietnam, however, they change to northeasterly and easterly in 

Central and South Vietnam while southeasterly and southerly in North Vietnam in SON and 

DJF. The effects of interactions, especially the interaction between circulations and 

topography, result in the seasonal cycle of rainfall over each sub–region as illustrated in 

Figure 4. 
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Figure 3. Mean winds at 850–hPa during the 1981–2001 period in (a) MAM, (b) JJA, (c) SON and 

(d) DJF of NHRCM (upper) and ERA (lower). 

Figure 4 describes the monthly average daily rainfall in seven sub–regions of Vietnam of 

the reanalysis (ERA), model (NHRCM), and observation (OBS) data. It is clear that the 

maximum average daily rainfall occurs in autumn in B4, N1, and N3 sub–regions while in 

summer in other sub–regions. The delay of the rainy season in B4 and N1 is due to the barrier 

effect of topography on prevailing winds during SON, causing heavy rainfall on the 

windward side of Truong Son Mountains (Figure 3c). According to the observations, the 

daily rainfall is commonly from 10 mm/day to 15 mm/day in almost all sub–regions, 

however, rainfall amounts can frequently reach 20 mm/day in B4 and N1 sub–regions 

(Figure 4a). The average daily rainfall is well captured in terms of the evolution but a little 

underestimated by NHRCM in all sub–regions except for N1 (Figure 4b). Figure 4c shows 

that the ERA average daily rainfall also has a good agreement with the observations in the 

annual march but is much overestimated in all sub–regions. 
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The differences in the monthly average daily rainfall between the ERA and NHRCM 

data and the observations in seven sub–regions are displayed in Figure 5. Accordingly, 

positive differences between ERA and the observations are found in almost all sub–regions 

except in October–November for B4, and in October–December for N1. In general, these 

differences tend to be higher in the rainy season, and the highest ones of 8 mm/day between 

ERA and the observations can be seen in B1. Conversely, negative differences are detected in 

almost all sub–regions when comparing the NHRCM and observation data. It is clear that 

higher differences occurred in higher rainfall months, and the most underestimated rainfall 

area is N3. 

 

Figure 5. Monthly average daily rainfall differences between (a) ERA and (b) NHRCM and the 

observations in seven sub–regions of Vietnam during the 1981–2001 period. 

Scatter plots of the average daily rainfall of the observations and NHRCM in seven 

sub–regions and the whole of Vietnam during 1981–2001 are depicted in Figure 6. 

Accordingly, the correlations of B1 and N3 sub–regions are over 0.6 while the others are over 

0.4. The correlation coefficient of the whole of Vietnam is 0.46. It is clear that rainfall 

amounts of 25–50 mm/day are often observed in B2 sub–region, however, such amounts are 

normally underestimated by NHRCM. The daily rainfall values of NHRCM in other 

sub–regions are overestimated compared with the observations. 

Maxima and means of the monthly maximum daily rainfall of the observations and 

NHRCM over seven sub–regions of Vietnam from 1981 to 2001 are shown in Fig. 7. In 

general, the monthly mean variations of NHRCM well follow those of the observations, 

however, a clear underestimation is found in N3. Besides, the maxima of the NHRCM 

maximum daily rainfall are underestimated compared with the observations in late autumn 

and early winter and vice versa in late spring and summer in almost all sub–regions. 

(c)

(a) (b)

Figure 4. Monthly average daily rainfall in seven 

sub–regions of Vietnam of (a) observation, (b) 

NHRCM and (c) ERA during the 1981–2001 

period. 
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Figure 6. Scatter plots of the average daily rainfall (mm/day) of the observations and NHRCM in 

seven sub–regions and the whole of Vietnam during the 1981–2001 period. 
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Figure 7. Maxima (columns) and means (lines) of the monthly maximum daily rainfall of the 

observations and NHRCM over seven sub–regions of Vietnam during the 1981–2001 period. 

Frequencies of the daily rainfall at different thresholds of the observations and NHRCM 

over seven sub–regions of Vietnam during the 1981–2001 period are illustrated in Fig. 8. 

Accordingly, frequency distribution of the observed daily rainfall is captured well by 

NHRCM. However, NHRCM tends to simulate cases with rainfall thresholds of below 16 

mm/day or above 50 mm/day with higher frequencies compared with the observations. In 

contrast, frequencies given by NHRCM seem to be lower than the observations for rainfall 

thresholds from 16 mm/day to 50 mm/day, especially in sub–regions N2 and N3. 

Frequencies of the daily rainfall at different thresholds of the observations and NHRCM 

over seven sub–regions of Vietnam during the 1981–2001 period are illustrated in Fig. 8. 

Accordingly, frequency distribution of the observed daily rainfall is captured well by 

NHRCM. However, NHRCM tends to simulate cases with rainfall thresholds of below 16 

mm/day or above 50 mm/day with higher frequencies compared with the observations. In 

contrast, frequencies given by NHRCM seem to be lower than the observations for rainfall 

thresholds from 16 mm/day to 50 mm/day, especially in sub–regions N2 and N3. 
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Figure 8. Frequencies of the daily rainfall at different thresholds of the observations and NHRCM 

over seven sub–regions of Vietnam during the 1981–2001 period. 

4. Conclusions 

The main goal of this paper is to evaluate the rainfall simulation of NHRCM over 

Vietnam and analyze its characteristics in the present climate from 1981 to 2001. The results 

show that the observed seasonal cycle of rainfall is captured well by NHRCM for all 

sub–regions, but magnitudes are underestimated in all sub–regions except South Central 

Vietnam (N1). Generally, higher differences are found in rainy months, and the most 

underestimation of rainfall is observed in South Vietnam (N3). However, correlation 

coefficients of the average daily rainfall between the observations and NHRCM are over 0.4 

for all sub–regions and are higher in North West Vietnam (B1, about 0.64) and South 

Vietnam (N3, about 0.61). The monthly absolute maxima of the observed daily rainfall are 

found in North Central (B4) in transition months when the model is underestimated 

significantly. Besides, NHRCM tends to simulate cases with rainfall thresholds of below 16 

mm/day or above 50 mm/day with higher frequencies compared with the observations. 

Conversely, frequencies found in the NHRCM rainfall data seem to be lower than the 

observations for cases with rainfall thresholds ranging from 16 mm/day to 50 mm/day, 

especially in sub–regions N2 and N3. These results have inspired a further study to examine 

statistical or bias correction for the rainfall simulations and projections of NHRCM over 

Vietnam. 
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